#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Functional Coupling between HIV-1 Integrase and the SWI/SNF Chromatin Remodeling Complex for Efficient Integration into Stable Nucleosomes


Establishment of stable HIV-1 infection requires the efficient integration of the retroviral genome into the host DNA. The molecular mechanism underlying the control of this process by the chromatin structure has not yet been elucidated. We show here that stably associated nucleosomes strongly inhibit in vitro two viral-end integration by decreasing the accessibility of DNA to integrase. Remodeling of the chromatinized template by the SWI/SNF complex, whose INI1 major component interacts with IN, restores and redirects the full-site integration into the stable nucleosome region. These effects are not observed after remodeling by other human remodeling factors such as SNF2H or BRG1 lacking the integrase binding protein INI1. This suggests that the restoration process depends on the direct interaction between IN and the whole SWI/SNF complex, supporting a functional coupling between the remodeling and integration complexes. Furthermore, in silico comparison between more than 40,000 non-redundant cellular integration sites selected from literature and nucleosome occupancy predictions also supports that HIV-1 integration is promoted in the genomic region of weaker intrinsic nucleosome density in the infected cell. Our data indicate that some chromatin structures can be refractory for integration and that coupling between nucleosome remodeling and HIV-1 integration is required to overcome this natural barrier.


Vyšlo v časopise: Functional Coupling between HIV-1 Integrase and the SWI/SNF Chromatin Remodeling Complex for Efficient Integration into Stable Nucleosomes. PLoS Pathog 7(2): e32767. doi:10.1371/journal.ppat.1001280
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1001280

Souhrn

Establishment of stable HIV-1 infection requires the efficient integration of the retroviral genome into the host DNA. The molecular mechanism underlying the control of this process by the chromatin structure has not yet been elucidated. We show here that stably associated nucleosomes strongly inhibit in vitro two viral-end integration by decreasing the accessibility of DNA to integrase. Remodeling of the chromatinized template by the SWI/SNF complex, whose INI1 major component interacts with IN, restores and redirects the full-site integration into the stable nucleosome region. These effects are not observed after remodeling by other human remodeling factors such as SNF2H or BRG1 lacking the integrase binding protein INI1. This suggests that the restoration process depends on the direct interaction between IN and the whole SWI/SNF complex, supporting a functional coupling between the remodeling and integration complexes. Furthermore, in silico comparison between more than 40,000 non-redundant cellular integration sites selected from literature and nucleosome occupancy predictions also supports that HIV-1 integration is promoted in the genomic region of weaker intrinsic nucleosome density in the infected cell. Our data indicate that some chromatin structures can be refractory for integration and that coupling between nucleosome remodeling and HIV-1 integration is required to overcome this natural barrier.


Zdroje

1. BushmanFD

CraigieR

1991

Activities of human immunodeficiency virus (HIV) integration protein in vitro: specific cleavage and integration of HIV DNA.

Proc Natl Acad Sci U S A

88

1339

1343

2. ShermanPA

FyfeJA

1990

Human immunodeficiency virus integration protein expressed in Escherichia coli possesses selective DNA cleaving activity.

Proc Natl Acad Sci U S A

87

5119

5123

3. EngelmanA

MizuuchiK

CraigieR

1991

HIV-1 DNA Integration: Mechanism of viral DNA Cleavage and strand transfer.

Cell

67

1211

1221

4. HindmarshP

LeisJ

1999

Retroviral DNA integration.

Microbiol Mol Biol Rev

63

836

843, table of contents

5. SinhaS

PursleyMH

GrandgenettDP

2002

Efficient concerted integration by recombinant human immunodeficiency virus type 1 integrase without cellular or viral cofactors.

J Virol

76

3105

3113

6. SinhaS

GrandgenettDP

2005

Recombinant human immunodeficiency virus type 1 integrase exhibits a capacity for full-site integration in vitro that is comparable to that of purified preintegration complexes from virus-infected cells.

J Virol

79

8208

8216

7. BowermanB

BrownPO

BishopJM

VarmusHE

1989

A nucleoprotein complex mediates the integration of retroviral DNA.

Genes Dev

3

469

478

8. PryciakPM

SilA

VarmusHE

1992

Retroviral integration into minichromosomes in vitro.

Embo J

11

291

303

9. PryciakMP

VarmusEH

1992

Nucleosomes, DNA-Binding Proteins, and DNA Sequence Modulate Retroviral Integration Target Site Selection.

Cell

69

769

780

10. PrussD

ReevesR

BushmanFD

WolffeAP

1994

The influence of DNA and nucleosome structure on integration events directed by HIV integrase.

J Biol Chem

269

25031

25041

11. PrussD

BushmanFD

WolffeAP

1994

Human immunodeficiency virus integrase directs integration to sites of severe DNA distortion within the nucleosome core.

Proc Natl Acad Sci U S A

91

5913

5917

12. WangGP

CiuffiA

LeipzigJ

BerryCC

BushmanFD

2007

HIV integration site selection: analysis by massively parallel pyrosequencing reveals association with epigenetic modifications.

Genome Res

17

1186

1194

13. SchroderAR

ShinnP

ChenH

BerryC

EckerJR

2002

HIV-1 integration in the human genome favors active genes and local hotspots.

Cell

110

521

529

14. MitchellRS

BeitzelBF

SchroderAR

ShinnP

ChenH

2004

Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences.

PLoS Biol

2

E234

15. ShunMC

RaghavendraNK

VandegraaffN

DaigleJE

HughesS

2007

LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration.

Genes Dev

21

1767

1778

16. WuY

MarshJW

2003

Early transcription from nonintegrated DNA in human immunodeficiency virus infection.

J Virol

77

10376

10382

17. TaganovKD

CuestaI

DanielR

CirilloLA

KatzRA

2004

Integrase-specific enhancement and suppression of retroviral DNA integration by compacted chromatin structure in vitro.

J Virol

78

5848

5855

18. LewinskiMK

YamashitaM

EmermanM

CiuffiA

MarshallH

2006

Retroviral DNA integration: viral and cellular determinants of target-site selection.

PLoS Pathog

2

e60

19. BushmanF

LewinskiM

CiuffiA

BarrS

LeipzigJ

2005

Genome-wide analysis of retroviral DNA integration.

Nat Rev Microbiol

3

848

858

20. BushmanFD

HoffmannC

RonenK

MalaniN

MinkahN

2008

Massively parallel pyrosequencing in HIV research.

Aids

22

1411

1415

21. KalpanaGV

MarmonS

WangW

CrabtreeGR

GoffSP

1994

Binding and stimulation of HIV-1 integrase by a human homolog of yeast transcription factor SNF5.

Science

266

2002

2006

22. SorinM

YungE

WuX

KalpanaGV

2006

HIV-1 replication in cell lines harboring INI1/hSNF5 mutations.

Retrovirology

3

56

23. MarounM

DelelisO

CoadouG

BaderT

SegeralE

2006

Inhibition of early steps of HIV-1 replication by SNF5/Ini1.

J Biol Chem

281

22736

22743

24. YungE

SorinM

PalA

CraigE

MorozovA

2001

Inhibition of HIV-1 virion production by a transdominant mutant of integrase interactor 1.

Nat Med

7

920

926

25. EatonMJ

FrydelBR

LopezTL

NieXT

HuangJ

2000

Generation and initial characterization of conditionally immortalized chromaffin cells.

Journal of Cellular Biochemistry

79

38

57

26. EmilianiS

MousnierA

BusschotsK

MarounM

Van MaeleB

2005

Integrase mutants defective for interaction with LEDGF/p75 are impaired in chromosome tethering and HIV-1 replication.

J Biol Chem

280

25517

25523

27. LlanoM

SaenzDT

MeehanA

WongthidaP

PeretzM

2006

An essential role for LEDGF/p75 in HIV integration.

Science

314

461

464

28. CiuffiA

LlanoM

PoeschlaE

HoffmannC

LeipzigJ

2005

A role for LEDGF/p75 in targeting HIV DNA integration.

Nat Med

11

1287

1289

29. MarshallHM

RonenK

BerryC

LlanoM

SutherlandH

2007

Role of PSIP1/LEDGF/p75 in lentiviral infectivity and integration targeting.

PLoS One

2

e1340

30. FerrisAL

WuX

HughesCM

StewartC

SmithSJ

2010

Lens epithelium-derived growth factor fusion proteins redirect HIV-1 DNA integration.

Proc Natl Acad Sci U SA

31. MeehanAM

SaenzDT

MorrisonJH

Garcia-RiveraJA

PeretzM

2009

LEDGF/p75 proteins with alternative chromatin tethers are functional HIV-1 cofactors.

PLoS Pathog

5

e1000522

32. SilversRM

SmithJA

SchowalterM

LitwinS

LiangZ

2010

Modification of integration site preferences of an HIV-1-based vector by expression of a novel synthetic protein.

Hum Gene Ther

21

337

349

33. GijsbersR

RonenK

VetsS

MalaniN

De RijckJ

2010

LEDGF hybrids efficiently retarget lentiviral integration into heterochromatin.

Mol Ther

18

552

560

34. BotbolY

RaghavendraNK

RahmanS

EngelmanA

LavigneM

2008

Chromatinized templates reveal the requirement for the LEDGF/p75 PWWP domain during HIV-1 integration in vitro.

Nucleic Acids Res

36

1237

1246

35. LesbatsP

MetifiotM

CalmelsC

BaranovaS

NevinskyG

2008

In vitro initial attachment of HIV-1 integrase to viral ends: control of the DNA specific interaction by the oligomerization state.

Nucleic Acids Res

36

7043

7058

36. IkedaK

StegerDJ

EberharterA

WorkmanJL

1999

Activation domain-specific and general transcription stimulation by native histone acetyltransferase complexes.

Mol Cell Biol

19

855

863

37. HassanAH

NeelyKE

WorkmanJL

2001

Histone acetyltransferase complexes stabilize swi/snf binding to promoter nucleosomes.

Cell

104

817

827

38. LavigneM

FrancisNJ

KingIF

KingstonRE

2004

Propagation of silencing; recruitment and repression of naive chromatin in trans by polycomb repressed chromatin.

Mol Cell

13

415

425

39. MilaniP

ChevereauG

VaillantC

AuditB

Haftek-TerreauZ

2009

Nucleosome positioning by genomic excluding-energy barriers.

Proc Natl Acad Sci U S A

106

22257

22262

40. VaillantC

AuditB

ArneodoA

2007

Experiments confirm the influence of genome long-range correlations on nucleosome positioning.

Phys Rev Lett

99

218103

41. LusserA

KadonagaJT

2004

Strategies for the reconstitution of chromatin.

Nat Methods

1

19

26

42. ClapierCR

CairnsBR

2009

The biology of chromatin remodeling complexes.

Annu Rev Biochem

78

273

304

43. YungE

SorinM

WangEJ

PerumalS

OttD

2004

Specificity of interaction of INI1/hSNF5 with retroviral integrases and its functional significance.

J Virol

78

2222

2231

44. TurelliP

DoucasV

CraigE

MangeatB

KlagesN

2001

Cytoplasmic recruitment of INI1 and PML on incoming HIV preintegration complexes: interference with early steps of viral replication.

Mol Cell

7

1245

1254

45. ParissiV

CaumontA

Richard de SoultraitV

DupontCH

PichuantesS

2000

Inactivation of the SNF5 transcription factor gene abolishes the lethal phenotype induced by the expression of HIV-1 integrase in yeast.

Gene

247

129

136

46. SifS

StukenbergPT

KirschnerMW

KingstonRE

1998

Mitotic inactivation of a human SWI/SNF chromatin remodeling complex.

Genes Dev

12

2842

2851

47. SifS

SaurinAJ

ImbalzanoAN

KingstonRE

2001

Purification and characterization of mSin3A-containing Brg1 and hBrm chromatin remodeling complexes.

Genes Dev

15

603

618

48. NarlikarGJ

FanHY

KingstonRE

2002

Cooperation between complexes that regulate chromatin structure and transcription.

Cell

108

475

487

49. AalfsJD

NarlikarGJ

KingstonRE

2001

Functional differences between the human ATP-dependent nucleosome remodeling proteins BRG1 and SNF2H.

J Biol Chem

276

34270

34278

50. FanHY

HeX

KingstonRE

NarlikarGJ

2003

Distinct strategies to make nucleosomal DNA accessible.

Mol Cell

11

1311

1322

51. FaureA

CalmelsC

DesjobertC

CastroviejoM

Caumont-SarcosA

2005

HIV-1 integrase crosslinked oligomers are active in vitro.

Nucleic Acids Res

33

977

986

52. PryciakPM

MüllerH-P

VarmusHE

1992

Simian virus 40 minichromosomes as targets for retroviral integration in vivo.

Proc Natl Acad Sci USA

89

9237

9241

53. HareS

GuptaSS

ValkovE

EngelmanA

CherepanovP

2010

Retroviral intasome assembly and inhibition of DNA strand transfer.

Nature

54. CherepanovP

MaertensG

ProostP

DevreeseB

Van BeeumenJ

2003

HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells.

J Biol Chem

278

372

381

55. MaertensG

CherepanovP

PluymersW

BusschotsK

De ClercqE

2003

LEDGF/p75 is essential for nuclear and chromosomal targeting of HIV-1 integrase in human cells.

J Biol Chem

278

33528

33539

56. Van MaeleB

BusschotsK

VandekerckhoveL

ChristF

DebyserZ

2006

Cellular co-factors of HIV-1 integration.

Trends Biochem Sci

31

98

105

57. StudamireB

GoffSP

2008

Host proteins interacting with the Moloney murine leukemia virus integrase: multiple transcriptional regulators and chromatin binding factors.

Retrovirology

5

48

58. DasS

CanoJ

KalpanaGV

2009

Multimerization and DNA binding properties of INI1/hSNF5 and its functional significance.

J Biol Chem

284

19903

19914

59. FieldY

Fondufe-MittendorfY

MooreIK

MieczkowskiP

KaplanN

2009

Gene expression divergence in yeast is coupled to evolution of DNA-encoded nucleosome organization.

Nat Genet

41

438

445

60. SegalE

Fondufe-MittendorfY

ChenL

ThastromA

FieldY

2006

A genomic code for nucleosome positioning.

Nature

442

772

778

61. TilloD

HughesTR

2009

G+C content dominates intrinsic nucleosome occupancy.

BMC Bioinformatics

10

442

62. KirchnerJ

SandmeyerSB

1996

Ty3 integrase mutants defective in reverse transcription or 3′-end processing of extrachromosomal Ty3 DNA.

J Virol

70

4737

4747

63. BachmanN

GelbartME

TsukiyamaT

BoekeJD

2005

TFIIIB subunit Bdp1p is required for periodic integration of the Ty1 retrotransposon and targeting of Isw2p to S. cerevisiae tDNAs.

Genes Dev

19

955

964

64. GelbartME

BachmanN

DelrowJ

BoekeJD

TsukiyamaT

2005

Genome-wide identification of Isw2 chromatin-remodeling targets by localization of a catalytically inactive mutant.

Genes Dev

19

942

954

65. DignamJD

MartinPL

ShastryBS

RoederRG

1983

Eukaryotic gene transcription with purified components.

Methods Enzymol

101

582

598

66. PhelanML

SifS

NarlikarGJ

KingstonRE

1999

Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits.

Mol Cell

3

247

253

67. WorkmanJL

TaylorIC

KingstonRE

RoederRG

1991

Control of class II gene transcription during in vitro nucleosome assembly.

Methods Cell Biol

35

419

447

68. MieleV

VaillantC

d'Aubenton-CarafaY

ThermesC

GrangeT

2008

DNA physical properties determine nucleosome occupancy from yeast to fly.

Nucleic Acids Res

36

3746

3756

69. LogieC

PetersonCL

1997

Catalytic activity of the yeast SWI/SNF complex on reconstituted nucleosome arrays.

Embo J

16

6772

6782

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2011 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#