#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

DC-SIGN Mediated Sphingomyelinase-Activation and Ceramide Generation Is Essential for Enhancement of Viral Uptake in Dendritic Cells


As pattern recognition receptor on dendritic cells (DCs), DC-SIGN binds carbohydrate structures on its pathogen ligands and essentially determines host pathogen interactions because it both skews T cell responses and enhances pathogen uptake for cis infection and/or T cell trans-infection. How these processes are initiated at the plasma membrane level is poorly understood. We now show that DC-SIGN ligation on DCs by antibodies, mannan or measles virus (MV) causes rapid activation of neutral and acid sphingomyelinases followed by accumulation of ceramides in the outer membrane leaflet. SMase activation is important in promoting DC-SIGN signaling, but also for enhancement of MV uptake into DCs. DC-SIGN-dependent SMase activation induces efficient, transient recruitment of CD150, which functions both as MV uptake receptor and microbial sensor, from an intracellular Lamp-1+ storage compartment shared with acid sphingomyelinase (ASM) within a few minutes. Subsequently, CD150 is displayed at the cell surface and co-clusters with DC-SIGN. Thus, DC-SIGN ligation initiates SMase-dependent formation of ceramide-enriched membrane microdomains which promote vertical segregation of CD150 from intracellular storage compartments along with ASM. Given the ability to promote receptor and signalosome co-segration into (or exclusion from) ceramide enriched microdomains which provide a favorable environment for membrane fusion, DC-SIGN-dependent SMase activation may be of general importance for modes and efficiency of pathogen uptake into DCs, and their routing to specific compartments, but also for modulating T cell responses.


Vyšlo v časopise: DC-SIGN Mediated Sphingomyelinase-Activation and Ceramide Generation Is Essential for Enhancement of Viral Uptake in Dendritic Cells. PLoS Pathog 7(2): e32767. doi:10.1371/journal.ppat.1001290
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1001290

Souhrn

As pattern recognition receptor on dendritic cells (DCs), DC-SIGN binds carbohydrate structures on its pathogen ligands and essentially determines host pathogen interactions because it both skews T cell responses and enhances pathogen uptake for cis infection and/or T cell trans-infection. How these processes are initiated at the plasma membrane level is poorly understood. We now show that DC-SIGN ligation on DCs by antibodies, mannan or measles virus (MV) causes rapid activation of neutral and acid sphingomyelinases followed by accumulation of ceramides in the outer membrane leaflet. SMase activation is important in promoting DC-SIGN signaling, but also for enhancement of MV uptake into DCs. DC-SIGN-dependent SMase activation induces efficient, transient recruitment of CD150, which functions both as MV uptake receptor and microbial sensor, from an intracellular Lamp-1+ storage compartment shared with acid sphingomyelinase (ASM) within a few minutes. Subsequently, CD150 is displayed at the cell surface and co-clusters with DC-SIGN. Thus, DC-SIGN ligation initiates SMase-dependent formation of ceramide-enriched membrane microdomains which promote vertical segregation of CD150 from intracellular storage compartments along with ASM. Given the ability to promote receptor and signalosome co-segration into (or exclusion from) ceramide enriched microdomains which provide a favorable environment for membrane fusion, DC-SIGN-dependent SMase activation may be of general importance for modes and efficiency of pathogen uptake into DCs, and their routing to specific compartments, but also for modulating T cell responses.


Zdroje

1. FreerG

MatteucciD

2009 Influence of dendritic cells on viral pathogenicity. PLoS Pathog 5 e1000384

2. Servet-DelpratC

VidalainPO

ValentinH

Rabourdin-CombeC

2003 Measles virus and dendritic cell functions: how specific response cohabits with immunosuppression. Curr Top Microbiol Immunol 276 103 123

3. PohlC

ShishkovaJ

Schneider-SchauliesS

2007 Viruses and dendritic cells: enemy mine. Cell Microbiol 9 279 289

4. Schneider-SchauliesS

KlaggeIM

ter MeulenV

2003 Dendritic cells and measles virus infection. Curr Top Microbiol Immunol 276 77 101

5. VeilletteA

Cruz-MunozME

ZhongMC

2006 SLAM family receptors and SAP-related adaptors: matters arising. Trends Immunol 27 228 234

6. de SwartRL

LudlowM

de WitteL

YanagiY

van AmerongenG

2007 Predominant infection of CD150+ lymphocytes and dendritic cells during measles virus infection of macaques. PLoS Pathog 3 e178

7. KruseM

MeinlE

HenningG

KuhntC

BerchtoldS

2001 Signaling lymphocytic activation molecule is expressed on mature CD83+ dendritic cells and is up-regulated by IL-1 beta. J Immunol 167 1989 1995

8. Schneider-SchauliesJ

Schneider-SchauliesS

2008 Receptor interactions, tropism, and mechanisms involved in morbillivirus-induced immunomodulation. Adv Virus Res 71 173 205

9. de WitteL

AbtM

Schneider-SchauliesS

van KooykY

GeijtenbeekTB

2006 Measles virus targets DC-SIGN to enhance dendritic cell infection. J Virol 80 3477 3486

10. de WitteL

de VriesRD

van der VlistM

YukselS

LitjensM

2008 DC-SIGN and CD150 have distinct roles in transmission of measles virus from dendritic cells to T-lymphocytes. PLoS Pathog 4 e1000049

11. GringhuisSI

den DunnenJ

LitjensM

van Het HofB

van KooykY

2007 C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-κB. Immunity 26 605 616

12. GeijtenbeekTB

van KooykY

2003 Pathogens target DC-SIGN to influence their fate DC-SIGN functions as a pathogen receptor with broad specificity. APMIS 111 698 714

13. van KooykY

GeijtenbeekTB

2003 DC-SIGN: escape mechanism for pathogens. Nat Rev Immunol 3 697 709

14. BleijsDA

GeijtenbeekTB

FigdorCG

van KooykY

2001 DC-SIGN and LFA-1: a battle for ligand. Trends Immunol 22 457 463

15. Garcia-VallejoJJ

van KooykY

2009 Endogenous ligands for C-type lectin receptors: the true regulators of immune homeostasis. Immunol Rev 230 22 37

16. NeumannAK

ThompsonNL

JacobsonK

2008 Distribution and lateral mobility of DC-SIGN on immature dendritic cells–implications for pathogen uptake. J Cell Sci 121 634 643

17. CambiA

de LangeF

van MaarseveenNM

NijhuisM

JoostenB

2004 Microdomains of the C-type lectin DC-SIGN are portals for virus entry into dendritic cells. J Cell Biol 164 145 155

18. CambiA

LidkeDS

Arndt-JovinDJ

FigdorCG

JovinTM

2007 Ligand-conjugated quantum dots monitor antigen uptake and processing by dendritic cells. Nano Lett 7 970 977

19. de BakkerBI

de LangeF

CambiA

KorterikJP

van DijkEM

2007 Nanoscale organization of the pathogen receptor DC-SIGN mapped by single-molecule high-resolution fluorescence microscopy. Chemphyschem 8 1473 1480

20. den DunnenJ

GringhuisSI

GeijtenbeekTB

2009 Innate signaling by the C-type lectin DC-SIGN dictates immune responses. Cancer Immunol Immunother 58 1149 1157

21. GringhuisSI

den DunnenJ

LitjensM

van der VlistM

GeijtenbeekTB

2009 Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori. Nat Immunol 10 1081 1088

22. HodgesA

SharrocksK

EdelmannM

BabanD

MorisA

2007 Activation of the lectin DC-SIGN induces an immature dendritic cell phenotype triggering Rho-GTPase activity required for HIV-1 replication. Nat Immunol 8 569 577

23. LudwigIS

LekkerkerkerAN

DeplaE

BosmanF

MustersRJ

2004 Hepatitis C virus targets DC-SIGN and L-SIGN to escape lysosomal degradation. J Virol 78 8322 8332

24. de WitteL

NabatovA

GeijtenbeekTB

2008 Distinct roles for DC-SIGN+-dendritic cells and Langerhans cells in HIV-1 transmission. Trends Mol Med 14 12 19

25. MarziA

MollerP

HannaSL

HarrerT

EisemannJ

2007 Analysis of the interaction of Ebola virus glycoprotein with DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin) and its homologue DC-SIGNR. J Infect Dis 196 S237 246

26. HannunYA

LubertoC

2000 Ceramide in the eukaryotic stress response. Trends Cell Biol 10 73 80

27. ZhangY

LiX

BeckerKA

GulbinsE

2009 Ceramide-enriched membrane domains-Structure and function. Biochim Biophys Acta 1788 178 83

28. GrassmeH

RiethmullerJ

GulbinsE

2007 Biological aspects of ceramide-enriched membrane domains. Prog Lipid Res 46 161 170

29. SchenckM

CarpinteiroA

GrassmeH

LangF

GulbinsE

2007 Ceramide: physiological and pathophysiological aspects. Arch Biochem Biophys 462 171 175

30. HannunYA

ObeidLM

2008 Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9 139 150

31. ClarkeCJ

SnookCF

TaniM

MatmatiN

MarchesiniN

2006 The extended family of neutral sphingomyelinases. Biochemistry 45 11247 11256

32. GoniFM

AlonsoA

2002 Sphingomyelinases: enzymology and membrane activity. FEBS Lett 531 38 46

33. YinX

ZafrullahM

LeeH

Haimovitz-FriedmanA

FuksZ

2009 A ceramide-binding C1 domain mediates kinase suppressor of ras membrane translocation. Cell Physiol Biochem 24 219 230

34. ZafrullahM

YinX

Haimovitz-FriedmanA

FuksZ

KolesnickR

2009 Kinase suppressor of Ras transphosphorylates c-Raf-1. Biochem Biophys Res Commun 390 434 440

35. RuvoloPP

2003 Intracellular signal transduction pathways activated by ceramide and its metabolites. Pharmacol Res 47 383 392

36. ZhangY

YaoB

DelikatS

BayoumyS

LinXH

1997 Kinase suppressor of Ras is ceramide-activated protein kinase. Cell 89 63 72

37. YanF

PolkDB

2001 Kinase suppressor of ras is necessary for tumor necrosis factor alpha activation of extracellular signal-regulated kinase/mitogen-activated protein kinase in intestinal epithelial cells. Cancer Res 61 963 969

38. BeckerKA

GellhausA

WinterhagerE

GulbinsE

2008 Ceramide-enriched membrane domains in infectious biology and development. Subcell Biochem 49 523 538

39. GulbinsE

DreschersS

WilkerB

GrassmeH

2004 Ceramide, membrane rafts and infections. J Mol Med 82 357 363

40. UtermohlenO

HerzJ

SchrammM

KronkeM

2008 Fusogenicity of membranes: the impact of acid sphingomyelinase on innate immune responses. Immunobiology 213 307 314

41. CaparrosE

MunozP

Sierra-FilardiE

Serrano-GomezD

Puig-KrogerA

2006 DC-SIGN ligation on dendritic cells results in ERK and PI3K activation and modulates cytokine production. Blood 107 3950 3958

42. FadeelB

GleissB

HogstrandK

ChandraJ

WiedmerT

1999 Phosphatidylserine exposure during apoptosis is a cell-type-specific event and does not correlate with plasma membrane phospholipid scramblase expression. Biochem Biophys Res Commun 266 504 511

43. CambiA

BeerenI

JoostenB

FransenJA

FigdorCG

2009 The C-type lectin DC-SIGN internalizes soluble antigens and HIV-1 virions via a clathrin-dependent mechanism. Eur J Immunol 39 1923 1928

44. GeijtenbeekTB

KwonDS

TorensmaR

van VlietSJ

van DuijnhovenGC

2000 DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100 587 597

45. GeijtenbeekTB

van KooykY

2003 DC-SIGN: a novel HIV receptor on DCs that mediates HIV-1 transmission. Curr Top Microbiol Immunol 276 31 54

46. HalaryF

AmaraA

Lortat-JacobH

MesserleM

DelaunayT

2002 Human cytomegalovirus binding to DC-SIGN is required for dendritic cell infection and target cell trans-infection. Immunity 17 653 664

47. HuwilerA

BrunnerJ

HummelR

VervoordeldonkM

StabelS

1996 Ceramide-binding and activation defines protein kinase c-Raf as a ceramide-activated protein kinase. Proc Natl Acad Sci U S A 93 6959 6963

48. YaoB

ZhangY

DelikatS

MathiasS

BasuS

1995 Phosphorylation of Raf by ceramide-activated protein kinase. Nature 378 307 310

49. RozenovaKA

DeevskaGM

KarakashianAA

Nikolova-KarakashianMN

2010 Studies on the role of acid sphingomyelinase and ceramide in the regulation of TACE activity and TNFα secretion in macrophages. J Biol Chem 285 21103 13

50. GassertE

AvotaE

HarmsH

KrohneG

GulbinsE

2009 Induction of membrane ceramides: a novel strategy to interfere with T lymphocyte cytoskeletal reorganisation in viral immunosuppression. PLoS Pathog 5 e1000623

51. MathiasS

YounesA

KanCC

OrlowI

JosephC

1993 Activation of the sphingomyelin signaling pathway in intact EL4 cells and in a cell-free system by IL-1 beta. Science 259 519 522

52. Adam-KlagesS

AdamD

WiegmannK

StruveS

KolanusW

1996 FAN, a novel WD-repeat protein, couples the p55 TNF-receptor to neutral sphingomyelinase. Cell 86 937 947

53. HashiguchiT

MaenakaK

YanagiY

2008 X-ray crystallographic analysis of measles virus hemagglutinin. Uirusu 58 1 10

54. BiebackK

LienE

KlaggeIM

AvotaE

Schneider-SchauliesJ

2002 Hemagglutinin protein of wild-type measles virus activates toll-like receptor 2 signaling. J Virol 76 8729 8736

55. MinagawaH

TanakaK

OnoN

TatsuoH

YanagiY

2001 Induction of the measles virus receptor SLAM (CD150) on monocytes. J Gen Virol 82 2913 2917

56. FalconeS

PerrottaC

De PalmaC

PiscontiA

ScioratiC

2004 Activation of acid sphingomyelinase and its inhibition by the nitric oxide/cyclic guanosine 3′,5′-monophosphate pathway: key events in Escherichia coli-elicited apoptosis of dendritic cells. J Immunol 173 4452 4463

57. SallustoF

NicoloC

De MariaR

CorintiS

TestiR

1996 Ceramide inhibits antigen uptake and presentation by dendritic cells. J Exp Med 184 2411 2416

58. FranchiL

MalisanF

TomassiniB

TestiR

2006 Ceramide catabolism critically controls survival of human dendritic cells. J Leukoc Biol 79 166 172

59. MacKichanML

DeFrancoAL

1999 Role of ceramide in lipopolysaccharide (LPS)-induced signaling. LPS increases ceramide rather than acting as a structural homolog. J Biol Chem 274 1767 1775

60. RotoloJA

ZhangJ

DonepudiM

LeeH

FuksZ

2005 Caspase-dependent and -independent activation of acid sphingomyelinase signaling. J Biol Chem 280 26425 26434

61. OhgimotoS

OhgimotoK

NiewieskS

KlaggeIM

PfeufferJ

2001 The haemagglutinin protein is an important determinant of measles virus tropism for dendritic cells in vitro. J Gen Virol 82 1835 1844

62. FinneganCM

BlumenthalR

2006 Fenretinide inhibits HIV infection by promoting viral endocytosis. Antiviral Res 69 116 123

63. FinneganCM

RawatSS

ChoEH

GuiffreDL

LockettS

2007 Sphingomyelinase restricts the lateral diffusion of CD4 and inhibits human immunodeficiency virus fusion. J Virol 81 5294 5304

64. JacobsA

GargH

ViardM

RavivY

PuriA

2008 HIV-1 envelope glycoprotein-mediated fusion and pathogenesis: implications for therapy and vaccine development. Vaccine 26 3026 3035

65. BergerSB

RomeroX

MaC

WangG

FaubionWA

2010 SLAM is a microbial sensor that regulates bacterial phagosome functions in macrophages. Nat Immunol 11 920 927

66. SpielhoferP

BachiT

FehrT

ChristiansenG

CattaneoR

1998 Chimeric measles viruses with a foreign envelope. J Virol 72 2150 2159

67. KorzeniowskiM

ShakorAB

MakowskaA

DrzewieckaA

BielawskaA

2007 Fc gamma RII activation induces cell surface ceramide production which participates in the assembly of the receptor signaling complex. Cell Physiol Biochem 20 347 356

68. TellierE

Negre-SalvayreA

BocquetB

ItoharaS

HannunYA

2007 Role for furin in tumor necrosis factor alpha-induced activation of the matrix metalloproteinase/sphingolipid mitogenic pathway. Mol Cell Biol 27 2997 3007

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2011 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#