#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

BosR (BB0647) Controls the RpoN-RpoS Regulatory Pathway and Virulence Expression in by a Novel DNA-Binding Mechanism


In Borrelia burgdorferi (Bb), the Lyme disease spirochete, the alternative σ factor σ54 (RpoN) directly activates transcription of another alternative σ factor, σS (RpoS) which, in turn, controls the expression of virulence-associated membrane lipoproteins. As is customary in σ54-dependent gene control, a putative NtrC-like enhancer-binding protein, Rrp2, is required to activate the RpoN-RpoS pathway. However, recently it was found that rpoS transcription in Bb also requires another regulator, BosR, which was previously designated as a Fur or PerR homolog. Given this unexpected requirement for a second activator to promote σ54-dependent gene transcription, and the fact that regulatory mechanisms among similar species of pathogenic bacteria can be strain-specific, we sought to confirm the regulatory role of BosR in a second virulent strain (strain 297) of Bb. Indeed, BosR displayed the same influence over lipoprotein expression and mammalian infectivity for strain Bb 297 that were previously noted for Bb strain B31. We subsequently found that recombinant BosR (rBosR) bound to the rpoS gene at three distinct sites, and that binding occurred despite the absence of consensus Fur or Per boxes. This led to the identification of a novel direct repeat sequence (TAAATTAAAT) critical for rBosR binding in vitro. Mutations in the repeat sequence markedly inhibited or abolished rBosR binding. Taken together, our studies provide new mechanistic insights into how BosR likely acts directly on rpoS as a positive transcriptional activator. Additional novelty is engendered by the facts that, although BosR is a Fur or PerR homolog and it contains zinc (like Fur and PerR), it has other unique features that clearly set it apart from these other regulators. Our findings also have broader implications regarding a previously unappreciated layer of control that can be involved in σ54–dependent gene regulation in bacteria.


Vyšlo v časopise: BosR (BB0647) Controls the RpoN-RpoS Regulatory Pathway and Virulence Expression in by a Novel DNA-Binding Mechanism. PLoS Pathog 7(2): e32767. doi:10.1371/journal.ppat.1001272
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1001272

Souhrn

In Borrelia burgdorferi (Bb), the Lyme disease spirochete, the alternative σ factor σ54 (RpoN) directly activates transcription of another alternative σ factor, σS (RpoS) which, in turn, controls the expression of virulence-associated membrane lipoproteins. As is customary in σ54-dependent gene control, a putative NtrC-like enhancer-binding protein, Rrp2, is required to activate the RpoN-RpoS pathway. However, recently it was found that rpoS transcription in Bb also requires another regulator, BosR, which was previously designated as a Fur or PerR homolog. Given this unexpected requirement for a second activator to promote σ54-dependent gene transcription, and the fact that regulatory mechanisms among similar species of pathogenic bacteria can be strain-specific, we sought to confirm the regulatory role of BosR in a second virulent strain (strain 297) of Bb. Indeed, BosR displayed the same influence over lipoprotein expression and mammalian infectivity for strain Bb 297 that were previously noted for Bb strain B31. We subsequently found that recombinant BosR (rBosR) bound to the rpoS gene at three distinct sites, and that binding occurred despite the absence of consensus Fur or Per boxes. This led to the identification of a novel direct repeat sequence (TAAATTAAAT) critical for rBosR binding in vitro. Mutations in the repeat sequence markedly inhibited or abolished rBosR binding. Taken together, our studies provide new mechanistic insights into how BosR likely acts directly on rpoS as a positive transcriptional activator. Additional novelty is engendered by the facts that, although BosR is a Fur or PerR homolog and it contains zinc (like Fur and PerR), it has other unique features that clearly set it apart from these other regulators. Our findings also have broader implications regarding a previously unappreciated layer of control that can be involved in σ54–dependent gene regulation in bacteria.


Zdroje

1. GruberTM

GrossCA

2003

Multiple sigma subunits and the partitioning of bacterial transcription space.

Annu Rev Microbiol

57

441

466

2. GhoshT

BoseD

ZhangX

2010

Mechanisms for activating bacterial RNA polymerase.

FEMS Microbiol Rev

34

611

627

3. RappasM

BoseD

ZhangX

2007

Bacterial enhancer-binding proteins: unlocking sigma54-dependent gene transcription.

Curr Opin Struct Biol

17

110

116

4. WigneshwerarajS

BoseD

BurrowsPC

JolyN

SchumacherJ

2008

Modus operandi of the bacterial RNA polymerase containing the sigma54 promoter-specificity factor.

Mol Microbiol

68

538

546

5. BurgdorferW

BarbourAG

HayesSF

BenachJL

GrunwaldtE

1982

Lyme disease-a tick-borne spirochetosis?

Science

216

1317

1319

6. SteereAC

GrodzickiRL

KornblattAN

CraftJE

BarbourAG

1983

The spirochetal etiology of Lyme disease.

N Engl J Med

308

733

740

7. FraserCM

CasjensS

HuangWM

SuttonGG

ClaytonR

1997

Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi.

Nature

390

580

586

8. BurtnickMN

DowneyJS

BrettPJ

BoylanJA

FryeJG

2007

Insights into the complex regulation of rpoS in Borrelia burgdorferi.

Mol Microbiol

65

277

293

9. HubnerA

YangX

NolenDM

PopovaTG

CabelloFC

2001

Expression of Borrelia burgdorferi OspC and DbpA is controlled by a RpoN-RpoS regulatory pathway.

Proc Natl Acad Sci U S A

98

12724

12729

10. OuyangZ

BlevinsJS

NorgardMV

2008

Transcriptional interplay among the regulators Rrp2, RpoN and RpoS in Borrelia burgdorferi.

Microbiology

154

2641

2658

11. SmithAH

BlevinsJS

BachlaniGN

YangXF

NorgardMV

2007

Evidence that RpoS (sigmaS) in Borrelia burgdorferi is controlled directly by RpoN (sigma54/sigmaN).

J Bacteriol

189

2139

2144

12. BrooksCS

HeftyPS

JolliffSE

AkinsDR

2003

Global analysis of Borrelia burgdorferi genes regulated by mammalian host-specific signals.

Infect Immun

71

3371

3383

13. CaimanoMJ

IyerR

EggersCH

GonzalezC

MortonEA

2007

Analysis of the RpoS regulon in Borrelia burgdorferi in response to mammalian host signals provides insight into RpoS function during the enzootic cycle.

Mol Microbiol

65

1193

1217

14. SchwanTG

PiesmanJ

GoldeWT

DolanMC

RosaPA

1995

Induction of an outer surface protein on Borrelia burgdorferi during tick feeding.

Proc Natl Acad Sci U S A

92

2909

2913

15. YangX

GoldbergMS

PopovaTG

SchoelerGB

WikelSK

2000

Interdependence of environmental factors influencing reciprocal patterns of gene expression in virulent Borrelia burgdorferi.

Mol Microbiol

37

1470

1479

16. FisherMA

GrimmD

HenionAK

EliasAF

StewartPE

2005

Borrelia burgdorferi sigma54 is required for mammalian infection and vector transmission but not for tick colonization.

Proc Natl Acad Sci U S A

102

5162

5167

17. YangXF

AlaniSM

NorgardMV

2003

The response regulator Rrp2 is essential for the expression of major membrane lipoproteins in Borrelia burgdorferi.

Proc Natl Acad Sci U S A

100

11001

11006

18. XuH

CaimanoMJ

LinT

HeM

RadolfJD

2010

Role of acetyl-phosphate in activation of the Rrp2-RpoN-RpoS pathway in Borrelia burgdorferi.

PLoS Pathog

6

9

e1001104

19. GrimmD

TillyK

ByramR

StewartPE

KrumJG

2004

Outer-surface protein C of the Lyme disease spirochete: a protein induced in ticks for infection of mammals.

Proc Natl Acad Sci U S A

101

3142

3147

20. PalU

YangX

ChenM

BockenstedtLK

AndersonJF

2004

OspC facilitates Borrelia burgdorferi invasion of Ixodes scapularis salivary glands.

J Clin Invest

113

220

230

21. BlevinsJS

HagmanKE

NorgardMV

2008

Assessment of decorin-binding protein A to the infectivity of Borrelia burgdorferi in the murine models of needle and tick infection.

BMC Microbiol

8

82

22. ShiY

XuQ

McShanK

LiangFT

2008

Both decorin-binding proteins A and B are critical for overall virulence of Borrelia burgdorferi.

Infect Immun

76

1239

1246

23. WeeningEH

ParveenN

TrzeciakowskiJP

LeongJM

HookM

2008

Borrelia burgdorferi lacking DbpBA exhibits an early survival defect during experimental infection.

Infect Immun

76

5694

5705

24. BlevinsJS

XuH

HeM

NorgardMV

ReitzerL

2009

Rrp2, a sigma54-dependent transcriptional activator of Borrelia burgdorferi, activates rpoS in an enhancer-independent manner.

J Bacteriol

191

2902

2905

25. LybeckerMC

SamuelsDS

2007

Temperature-induced regulation of RpoS by a small RNA in Borrelia burgdorferi.

Mol Microbiol

64

1075

1089

26. LybeckerMC

AbelCA

FeigAL

SamuelsDS

2010

Identification and function of the RNA chaperone Hfq in the Lyme disease spirochete Borrelia burgdorferi.

Mol Microbiol

78

622

635

27. OuyangZ

HeM

OmanT

YangXF

NorgardMV

2009

A manganese transporter, BB0219 (BmtA), is required for virulence by the Lyme disease spirochete, Borrelia burgdorferi.

Proc Natl Acad Sci U S A

106

3449

3454

28. KatonaLI

TokarzR

KuhlowCJ

BenachJ

BenachJL

2004

The fur homologue in Borrelia burgdorferi.

J Bacteriol

186

6443

6456

29. BoylanJA

PoseyJE

GherardiniFC

2003

Borrelia oxidative stress response regulator, BosR: a distinctive Zn-dependent transcriptional activator.

Proc Natl Acad Sci U S A

100

11684

11689

30. CarpenterBM

WhitmireJM

MerrellDS

2009

This is not your mother's repressor: the complex role of fur in pathogenesis.

Infect Immun

77

2590

2601

31. PoseyJE

GherardiniFC

2000

Lack of a role for iron in the Lyme disease pathogen.

Science

288

1651

1653

32. HydeJA

ShawDK

SmithRIii

TrzeciakowskiJP

SkareJT

2009

The BosR regulatory protein of Borrelia burgdorferi interfaces with the RpoS regulatory pathway and modulates both the oxidative stress response and pathogenic properties of the Lyme disease spirochete.

Mol Microbiol

74

1344

1355

33. HydeJA

ShawDK

SmithR3rd

TrzeciakowskiJP

SkareJT

2010

Characterization of a conditional bosR mutant in Borrelia burgdorferi.

Infect Immun

78

265

274

34. OuyangZ

KumarM

KariuT

HaqS

GoldbergM

2009

BosR (BB0647) governs virulence expression in Borrelia burgdorferi.

Mol Microbiol

74

1331

1343

35. SamuelsDS

RadolfJD

2009

Who is the BosR around here anyway?

Mol Microbiol

74

1295

1299

36. DmitrievAV

McDowellEJ

ChausseeMS

2008

Inter- and intraserotypic variation in the Streptococcus pyogenes Rgg regulon.

FEMS Microbiol Lett

284

43

51

37. LuoF

LizanoS

BessenDE

2008

Heterogeneity in the polarity of Nra regulatory effects on streptococcal pilus gene transcription and virulence.

Infect Immun

76

2490

2497

38. RibardoDA

McIverKS

2006

Defining the Mga regulon: Comparative transcriptome analysis reveals both direct and indirect regulation by Mga in the group A streptococcus.

Mol Microbiol

62

491

508

39. OjaimiC

MulayV

LiverisD

IyerR

SchwartzI

2005

Comparative transcriptional profiling of Borrelia burgdorferi clinical isolates differing in capacities for hematogenous dissemination.

Infect Immun

73

6791

6802

40. WangG

van DamAP

SchwartzI

DankertJ

1999

Molecular typing of Borrelia burgdorferi sensu lato: taxonomic, epidemiological, and clinical implications.

Clin Microbiol Rev

12

633

653

41. Labandeira-ReyM

SkareJT

2001

Decreased infectivity in Borrelia burgdorferi strain B31 is associated with loss of linear plasmid 25 or 28-1.

Infect Immun

69

446

455

42. PurserJE

NorrisSJ

2000

Correlation between plasmid content and infectivity in Borrelia burgdorferi.

Proc Natl Acad Sci U S A

97

13865

13870

43. AkinsDR

BourellKW

CaimanoMJ

NorgardMV

RadolfJD

1998

A new animal model for studying Lyme disease spirochetes in a mammalian host-adapted state.

J Clin Invest

101

2240

2250

44. BartholdSW

de SouzaMS

JanotkaJL

SmithAL

PersingDH

1993

Chronic Lyme borreliosis in the laboratory mouse.

Am J Pathol

143

959

971

45. BlevinsJS

RevelAT

SmithAH

BachlaniGN

NorgardMV

2007

Adaptation of a luciferase gene reporter and lac expression system to Borrelia burgdorferi.

Appl Environ Microbiol

73

1501

1513

46. EggersCH

CaimanoMJ

RadolfJD

2004

Analysis of promoter elements involved in the transcriptional initiation of RpoS-dependent Borrelia burgdorferi genes.

J Bacteriol

186

7390

7402

47. OuyangZ

HaqS

NorgardMV

2010

Analysis of the dbpBA upstream regulatory region controlled by RpoS in Borrelia burgdorferi.

J Bacteriol

192

1965

1974

48. YangXF

LybeckerMC

PalU

AlaniSM

BlevinsJ

2005

Analysis of the ospC regulatory element controlled by the RpoN-RpoS regulatory pathway in Borrelia burgdorferi.

J Bacteriol

187

4822

4829

49. DesrosiersDC

SunYC

ZaidiAA

EggersCH

CoxDL

2007

The general transition metal (Tro) and Zn2+ (Znu) transporters in Treponema pallidum: analysis of metal specificities and expression profiles.

Mol Microbiol

65

137

152

50. AlthausEW

OuttenCE

OlsonKE

CaoH

O'HalloranTV

1999

The ferric uptake regulation (Fur) repressor is a zinc metalloprotein.

Biochemistry

38

6559

6569

51. TraoreDA

El GhazouaniA

IlangoS

DupuyJ

JacquametL

2006

Crystal structure of the apo-PerR-Zn protein from Bacillus subtilis.

Mol Microbiol

61

1211

1219

52. SheikhMA

TaylorGL

2009

Crystal structure of the Vibrio cholerae ferric uptake regulator (Fur) reveals insights into metal co-ordination.

Mol Microbiol

72

1208

1220

53. EscolarL

Perez-MartinJ

de LorenzoV

1999

Opening the iron box: transcriptional metalloregulation by the Fur protein.

J Bacteriol

181

6223

6229

54. JoslinSN

HendrixsonDR

2008

Analysis of the Campylobacter jejuni FlgR response regulator suggests integration of diverse mechanisms to activate an NtrC-like protein.

J Bacteriol

190

2422

2433

55. LiX

PalU

RamamoorthiN

LiuX

DesrosiersDC

2007

The Lyme disease agent Borrelia burgdorferi requires BB0690, a Dps homologue, to persist within ticks.

Mol Microbiol

63

694

710

56. MitraR

DasHK

DixitA

2005

Identification of a positive transcription regulatory element within the coding region of the nifLA operon in Azotobacter vinelandii.

Appl Environ Microbiol

71

3716

3724

57. ShimadaT

IshihamaA

BusbySJ

GraingerDC

2008

The Escherichia coli RutR transcription factor binds at targets within genes as well as intergenic regions.

Nucleic Acids Res

36

3950

3955

58. BaichooN

HelmannJD

2002

Recognition of DNA by Fur: a reinterpretation of the Fur box consensus sequence.

J Bacteriol

184

5826

5832

59. FriedmanYE

O'BrianMR

2003

A novel DNA-binding site for the ferric uptake regulator (Fur) protein from Bradyrhizobium japonicum.

J Biol Chem

278

38395

38401

60. LeeJW

HelmannJD

2007

Functional specialization within the Fur family of metalloregulators.

Biometals

20

485

499

61. GoosenN

van de PutteP

1995

The regulation of transcription initiation by integration host factor.

Mol Microbiol

16

1

7

62. KiupakisAK

ReitzerL

2002

ArgR-independent induction and ArgR-dependent superinduction of the astCADBE operon in Escherichia coli.

J Bacteriol

184

2940

2950

63. LuCD

AbdelalAT

1999

Role of ArgR in activation of the ast operon, encoding enzymes of the arginine succinyltransferase pathway in Salmonella typhimurium.

J Bacteriol

181

1934

1938

64. GaoM

D'HaezeW

De RyckeR

HolstersM

2001

Dual control of the nodA operon of Azorhizobium caulinodans ORS571 by a nod box and a NifA-sigma54-type promoter.

Mol Genet Genomics

265

1050

1059

65. HughesCA

KodnerCB

JohnsonRC

1992

DNA analysis of Borrelia burgdorferi NCH-1, the first northcentral U.S. human Lyme disease isolate.

J Clin Microbiol

30

698

703

66. PollackRJ

TelfordSR3rd

SpielmanA

1993

Standardization of medium for culturing Lyme disease spirochetes.

J Clin Microbiol

31

1251

1255

67. SamuelsDS

1995

Electrotransformation of the spirochete Borrelia burgdorferi.

Methods Mol Biol

47

253

259

68. RevelAT

BlevinsJS

AlmazanC

NeilL

KocanKM

2005

bptA (bbe16) is essential for the persistence of the Lyme disease spirochete, Borrelia burgdorferi, in its natural tick vector.

Proc Natl Acad Sci U S A

102

6972

6977

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2011 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#