#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Rubella Virus Capsid Is an Anti-Apoptotic Protein that Attenuates the Pore-Forming Ability of Bax


Apoptosis is an important mechanism by which virus-infected cells are eliminated from the host. Accordingly, many viruses have evolved strategies to prevent or delay apoptosis in order to provide a window of opportunity in which virus replication, assembly and egress can take place. Interfering with apoptosis may also be important for establishment and/or maintenance of persistent infections. Whereas large DNA viruses have the luxury of encoding accessory proteins whose primary function is to undermine programmed cell death pathways, it is generally thought that most RNA viruses do not encode these types of proteins. Here we report that the multifunctional capsid protein of Rubella virus is a potent inhibitor of apoptosis. The main mechanism of action was specific for Bax as capsid bound Bax and prevented Bax-induced apoptosis but did not bind Bak nor inhibit Bak-induced apoptosis. Intriguingly, interaction with capsid protein resulted in activation of Bax in the absence of apoptotic stimuli, however, release of cytochrome c from mitochondria and concomitant activation of caspase 3 did not occur. Accordingly, we propose that binding of capsid to Bax induces the formation of hetero-oligomers that are incompetent for pore formation. Importantly, data from reverse genetic studies are consistent with a scenario in which the anti-apoptotic activity of capsid protein is important for virus replication. If so, this would be among the first demonstrations showing that blocking apoptosis is important for replication of an RNA virus. Finally, it is tempting to speculate that other slowly replicating RNA viruses employ similar mechanisms to avoid killing infected cells.


Vyšlo v časopise: The Rubella Virus Capsid Is an Anti-Apoptotic Protein that Attenuates the Pore-Forming Ability of Bax. PLoS Pathog 7(2): e32767. doi:10.1371/journal.ppat.1001291
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1001291

Souhrn

Apoptosis is an important mechanism by which virus-infected cells are eliminated from the host. Accordingly, many viruses have evolved strategies to prevent or delay apoptosis in order to provide a window of opportunity in which virus replication, assembly and egress can take place. Interfering with apoptosis may also be important for establishment and/or maintenance of persistent infections. Whereas large DNA viruses have the luxury of encoding accessory proteins whose primary function is to undermine programmed cell death pathways, it is generally thought that most RNA viruses do not encode these types of proteins. Here we report that the multifunctional capsid protein of Rubella virus is a potent inhibitor of apoptosis. The main mechanism of action was specific for Bax as capsid bound Bax and prevented Bax-induced apoptosis but did not bind Bak nor inhibit Bak-induced apoptosis. Intriguingly, interaction with capsid protein resulted in activation of Bax in the absence of apoptotic stimuli, however, release of cytochrome c from mitochondria and concomitant activation of caspase 3 did not occur. Accordingly, we propose that binding of capsid to Bax induces the formation of hetero-oligomers that are incompetent for pore formation. Importantly, data from reverse genetic studies are consistent with a scenario in which the anti-apoptotic activity of capsid protein is important for virus replication. If so, this would be among the first demonstrations showing that blocking apoptosis is important for replication of an RNA virus. Finally, it is tempting to speculate that other slowly replicating RNA viruses employ similar mechanisms to avoid killing infected cells.


Zdroje

1. HobmanT

ChantlerJ

2006 Rubella Virus.

KnipeDM

GriffinDE

LambRA

MartinMA

Fields Virology. 5th edition Philadelphia Lippincott, Williams & Wilkins 1069 1100

2. ChantlerJK

FordDK

TingleAJ

1982 Persistent rubella infection and rubella-associated arthritis. Lancet 1 1323 1325

3. ChantlerJK

TingleAJ

PettyRE

1985 Persistent rubella virus infection associated with chronic arthritis in children. N Engl J Med 313 1117 1123

4. Boriskin YuS

DesyatskovaRG

BogomolovaNN

GorbulevVG

1986 Stability of rubella virus after long-term persistence in human cell line. Microbiologica 9 235 242

5. FreyTK

HemphillML

1988 Generation of defective-interfering particles by Rubella virus in vero cells. Virology 164 22 29

6. AdamoMP

ZapataM

FreyTK

2008 Analysis of gene expression in fetal and adult cells infected with rubella virus. Virology 370 1 11

7. BardelettiG

GautheronDC

1976 Phospholipid and cholesterol composition of rubella virus and its host cell BHK 21 grown in suspension cultures. Arch Virol 52 19 27

8. LeeJY

BowdenDS

MarshallJA

1996 Membrane junctions associated with rubella virus infected cells. J Submicrosc Cytol Pathol 28 101 108

9. LeeJY

BowdenDS

2000 Rubella virus replication and links to teratogenicity. Clin Microbiol Rev 13 571 587

10. BeatchMD

EverittJC

LawLJ

HobmanTC

2005 Interactions between rubella virus capsid and host protein p32 are important for virus replication. J Virol 79 10807 10820

11. LeeJY

MarshallJA

BowdenDS

1999 Localization of rubella virus core particles in vero cells. Virology 265 110 119

12. IlkowCS

WeckbeckerD

ChoWJ

MeierS

BeatchMD

2009 The Rubella Virus Capsid protein inhibits Mitochondrial Import. J Virol 84 119 130

13. BarryM

WasilenkoST

StewartTL

TaylorJM

2004 Apoptosis regulator genes encoded by poxviruses. Prog Mol Subcell Biol 36 19 37

14. GriffinDE

HardwickJM

1997 Regulators of apoptosis on the road to persistent alphavirus infection. Annu Rev Microbiol 51 565 592

15. GriffinDE

2006 Alphaviruses.

KnipeDM

GriffinDE

LambRA

MartinMA

Fields Virology. 5th edition Philadelphia Lippincott, Williams & Wilkins 1023 1068

16. FreyTK

1994 Molecular biology of rubella virus. Adv Virus Res 44 69 160

17. MegyeriK

BerencsiK

HalazonetisTD

PrendergastGC

GriG

1999 Involvement of a p53-dependent pathway in rubella virus-induced apoptosis. Virology 259 74 84

18. SanchezV

LucasM

SanzA

GobernaR

1992 Decreased protein kinase C activity is associated with programmed cell death (apoptosis) in freshly isolated rat hepatocytes. Biosci Rep 12 199 206

19. HofmannJ

PletzMW

LiebertUG

1999 Rubella virus-induced cytopathic effect in vitro is caused by apoptosis. J Gen Virol 80 1657 1664

20. PugachevKV

AbernathyES

FreyTK

1997 Improvement of the specific infectivity of the rubella virus (RUB) infectious clone: determinants of cytopathogenicity induced by RUB map to the nonstructural proteins. J Virol 71 562 568

21. BoiseLH

Gonzalez-GarciaM

PostemaCE

DingL

LindstenT

1993 bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74 597 608

22. DuncanR

EsmailiA

LawLM

BertholetS

HoughC

2000 Rubella virus capsid protein induces apoptosis in transfected RK13 cells. Virology 275 20 29

23. DuncanR

MullerJ

LeeN

EsmailiA

NakhasiHL

1999 Rubella virus-induced apoptosis varies among cell lines and is modulated by Bcl-XL and caspase inhibitors. Virology 255 117 128

24. SaitoM

KorsmeyerSJ

SchlesingerPH

2000 BAX-dependent transport of cytochrome c reconstituted in pure liposomes. Nat Cell Biol 2 553 555

25. WeiMC

ZongWX

ChengEH

LindstenT

PanoutsakopoulouV

2001 Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292 727 730

26. WeiMC

LindstenT

MoothaVK

WeilerS

GrossA

2000 tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev 14 2060 2071

27. ChipukJE

GreenDR

2008 How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol 18 157 164

28. GopingIS

GrossA

LavoieJN

NguyenM

JemmersonR

1998 Regulated targeting of BAX to mitochondria. J Cell Biol 143 207 215

29. KarbowskiM

LeeYJ

GaumeB

JeongSY

FrankS

2002 Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J Cell Biol 159 931 938

30. GavathiotisE

SuzukiM

DavisML

PitterK

BirdGH

2008 BAX activation is initiated at a novel interaction site. Nature 455 1076 1081

31. SuzukiM

YouleRJ

TjandraN

2000 Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103 645 654

32. WolterKG

HsuYT

SmithCL

NechushtanA

XiXG

1997 Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol 139 1281 1292

33. AntonssonB

MontessuitS

SanchezB

MartinouJC

2001 Bax is present as a high molecular weight oligomer/complex in the mitochondrial membrane of apoptotic cells. J Biol Chem 276 11615 11623

34. AntonssonB

MontessuitS

LauperS

EskesR

MartinouJC

2000 Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem J 345 Pt 2 271 278

35. HsuYT

YouleRJ

1997 Nonionic detergents induce dimerization among members of the Bcl-2 family. J Biol Chem 272 13829 13834

36. HsuT

BetenbaughM

1997 Coexpression of molecular chaperone BiP improves immunoglobulin solubility and IgG secretion from Trichoplusiani insect cells. Biotechnol Prog 13 96 104

37. KitanakaC

NamikiT

NoguchiK

MochizukiT

KagayaS

1997 Caspase-dependent apoptosis of COS-7 cells induced by Bax overexpression: differential effects of Bcl-2 and Bcl-xL on Bax-induced caspase activation and apoptosis. Oncogene 15 1763 1772

38. FinucaneDM

Bossy-WetzelE

WaterhouseNJ

CotterTG

GreenDR

1999 Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-xL. J Biol Chem 274 2225 2233

39. GalluzziL

BrennerC

MorselliE

TouatZ

KroemerG

2008 Viral control of mitochondrial apoptosis. PLoS Pathog 4 e1000018

40. SalakoMA

CarterMJ

KassGE

2006 Coxsackievirus protein 2BC blocks host cell apoptosis by inhibiting caspase-3. J Biol Chem 281 16296 16304

41. RomanovaLI

LidskyPV

KolesnikovaMS

FominykhKV

GmylAP

2009 Antiapoptotic activity of the cardiovirus leader protein, a viral “security” protein. J Virol 83 7273 7284

42. ErdtmannL

FranckN

LeratH

Le SeyecJ

GilotD

2003 The hepatitis C virus NS2 protein is an inhibitor of CIDE-B-induced apoptosis. J Biol Chem 278 18256 18264

43. ReyesGR

2002 The nonstructural NS5A protein of hepatitis C virus: an expanding, multifunctional role in enhancing hepatitis C virus pathogenesis. J Biomed Sci 9 187 197

44. UrbanowskiMD

IlkowCS

HobmanTC

2008 Modulation of signaling pathways by RNA virus capsid proteins. Cell Signal 20 1227 1236

45. LeeSH

KimYK

KimCS

SeolSK

KimJ

2005 E2 of hepatitis C virus inhibits apoptosis. J Immunol 175 8226 8235

46. ZhuLX

LiuJ

XieYH

KongYY

YeY

2004 Expression of hepatitis C virus envelope protein 2 induces apoptosis in cultured mammalian cells. World J Gastroenterol 10 2972 2978

47. ChiouHL

HsiehYS

HsiehMR

ChenTY

2006 HCV E2 may induce apoptosis of Huh-7 cells via a mitochondrial-related caspase pathway. Biochem Biophys Res Commun 345 453 458

48. MunshiN

BalasubramanianA

KozielM

GanjuRK

GroopmanJE

2003 Hepatitis C and human immunodeficiency virus envelope proteins cooperatively induce hepatocytic apoptosis via an innocent bystander mechanism. J Infect Dis 188 1192 1204

49. PugachevKV

FreyTK

1998 Rubella virus induces apoptosis in culture cells. Virology 250 359 370

50. DomeganLM

AtkinsGJ

2002 Apoptosis induction by the Therien and vaccine RA27/3 strains of rubella virus causes depletion of oligodendrocytes from rat neural cell cultures. J Gen Virol 83 2135 2143

51. HemphillML

ForngRY

AbernathyES

FreyTK

1988 Time course of virus-specific macromolecular synthesis during rubella virus infection in Vero cells. Virology 162 65 75

52. WilliamsonCD

Colberg-PoleyAM

2009 Access of viral proteins to mitochondria via mitochondria-associated membranes. Rev Med Virol 19 147 164

53. HobmanTC

LundstromML

MauracherCA

WoodwardL

GillamS

1994 Assembly of rubella virus structural proteins into virus-like particles in transfected cells. Virology 202 574 585

54. GarbuttM

ChanH

HobmanTC

1999 Secretion of rubella virions and virus-like particles in cultured epithelial cells. Virology 261 340 346

55. TzengWP

FreyTK

2003 Complementation of a deletion in the rubella virus p150 nonstructural protein by the viral capsid protein. J Virol 77 9502 9510

56. PoncetD

LarochetteN

PauleauAL

BoyaP

JalilAA

2004 An anti-apoptotic viral protein that recruits Bax to mitochondria. J Biol Chem 279 22605 22614

57. SuomalainenM

GaroffH

BaronMD

1990 The E2 signal sequence of rubella virus remains part of the capsid protein and confers membrane association in vitro. J Virol 64 5500 5509

58. LawLM

DuncanR

EsmailiA

NakhasiHL

HobmanTC

2001 Rubella virus E2 signal peptide is required for perinuclear localization of capsid protein and virus assembly. J Virol 75 1978 1983

59. PauleauAL

LarochetteN

GiordanettoF

ScholzSR

PoncetD

2007 Structure-function analysis of the interaction between Bax and the cytomegalovirus-encoded protein vMIA. Oncogene 26 7067 7080

60. ArnoultD

BartleLM

SkaletskayaA

PoncetD

ZamzamiN

2004 Cytomegalovirus cell death suppressor vMIA blocks Bax- but not Bak-mediated apoptosis by binding and sequestering Bax at mitochondria. Proc Natl Acad Sci U S A 101 7988 7993

61. BeatchMD

HobmanTC

2000 Rubella virus capsid associates with host cell protein p32 and localizes to mitochondria. J Virol 74 5569 5576

62. BurikhanovR

ZhaoY

GoswamiA

QiuS

SchwarzeSR

2009 The tumor suppressor Par-4 activates an extrinsic pathway for apoptosis. Cell 138 377 388

63. El-GuendyN

RangnekarVM

2003 Apoptosis by Par-4 in cancer and neurodegenerative diseases. Exp Cell Res 283 51 66

64. GurumurthyS

GoswamiA

VasudevanKM

RangnekarVM

2005 Phosphorylation of Par-4 by protein kinase A is critical for apoptosis. Mol Cell Biol 25 1146 1161

65. ItahanaK

ZhangY

2008 Mitochondrial p32 is a critical mediator of ARF-induced apoptosis. Cancer Cell 13 542 553

66. SunayamaJ

AndoY

ItohN

TomiyamaA

SakuradaK

2004 Physical and functional interaction between BH3-only protein Hrk and mitochondrial pore-forming protein p32. Cell Death Differ 11 771 781

67. LawLM

EverittJC

BeatchMD

HolmesCF

HobmanTC

2003 Phosphorylation of rubella virus capsid regulates its RNA binding activity and virus replication. J Virol 77 1764 1771

68. HobmanTC

LundstromML

GillamS

1990 Processing and intracellular transport of rubella virus structural proteins in COS cells. Virology 178 122 133

69. AnderssonS

DavisDL

DahlbackH

JornvallH

RussellDW

1989 Cloning, structure, and expression of the mitochondrial cytochrome P-450 sterol 26-hydroxylase, a bile acid biosynthetic enzyme. J Biol Chem 264 8222 8229

70. YaoJ

GillamS

1999 Mutational analysis, using a full-length rubella virus cDNA clone, of rubella virus E1 transmembrane and cytoplasmic domains required for virus release. J Virol 73 4622 4630

71. WongLM

MedranoJ

2005 Real-Time PCR for mRNA quantification. Bio-Techniques 39 75 85

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2011 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#