#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Biological and Structural Characterization of a Host-Adapting Amino Acid in Influenza Virus


Two amino acids (lysine at position 627 or asparagine at position 701) in the polymerase subunit PB2 protein are considered critical for the adaptation of avian influenza A viruses to mammals. However, the recently emerged pandemic H1N1 viruses lack these amino acids. Here, we report that a basic amino acid at position 591 of PB2 can compensate for the lack of lysine at position 627 and confers efficient viral replication to pandemic H1N1 viruses in mammals. Moreover, a basic amino acid at position 591 of PB2 substantially increased the lethality of an avian H5N1 virus in mice. We also present the X-ray crystallographic structure of the C-terminus of a pandemic H1N1 virus PB2 protein. Arginine at position 591 fills the cleft found in H5N1 PB2 proteins in this area, resulting in differences in surface shape and charge for H1N1 PB2 proteins. These differences may affect the protein's interaction with viral and/or cellular factors, and hence its ability to support virus replication in mammals.


Vyšlo v časopise: Biological and Structural Characterization of a Host-Adapting Amino Acid in Influenza Virus. PLoS Pathog 6(8): e32767. doi:10.1371/journal.ppat.1001034
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1001034

Souhrn

Two amino acids (lysine at position 627 or asparagine at position 701) in the polymerase subunit PB2 protein are considered critical for the adaptation of avian influenza A viruses to mammals. However, the recently emerged pandemic H1N1 viruses lack these amino acids. Here, we report that a basic amino acid at position 591 of PB2 can compensate for the lack of lysine at position 627 and confers efficient viral replication to pandemic H1N1 viruses in mammals. Moreover, a basic amino acid at position 591 of PB2 substantially increased the lethality of an avian H5N1 virus in mice. We also present the X-ray crystallographic structure of the C-terminus of a pandemic H1N1 virus PB2 protein. Arginine at position 591 fills the cleft found in H5N1 PB2 proteins in this area, resulting in differences in surface shape and charge for H1N1 PB2 proteins. These differences may affect the protein's interaction with viral and/or cellular factors, and hence its ability to support virus replication in mammals.


Zdroje

1. NeumannG

NodaT

KawaokaY

2009 Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature 459 931 939

2. YenHL

AldridgeJR

BoonAC

IlyushinaNA

SalomonR

2009 Changes in H5N1 influenza virus hemagglutinin receptor binding domain affect systemic spread. Proc Natl Acad Sci U S A 106 286 291

3. HattaM

GaoP

HalfmannP

KawaokaY

2001 Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293 1840 1842

4. SubbaraoEK

LondonW

MurphyBR

1993 A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J Virol 67 1761 1764

5. LiZ

ChenH

JiaoP

DengG

TianG

2005 Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. J Virol 79 12058 12064

6. FouchierRA

SchneebergerPM

RozendaalFW

BroekmanJM

KeminkSA

2004 Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad Sci U S A 101 1356 1361

7. LeQM

Sakai-TagawaY

OzawaM

ItoM

KawaokaY

2009 Selection of H5N1 influenza virus PB2 during replication in humans. J Virol 83 5278 5281

8. Van HoevenN

PappasC

BelserJA

MainesTR

ZengH

2009 Human HA and polymerase subunit PB2 proteins confer transmission of an avian influenza virus through the air. Proc Natl Acad Sci U S A 106 3366 3371

9. SteelJ

LowenAC

MubarekaS

PaleseP

2009 Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701N. PLoS Pathog 5 e1000252

10. ShinyaK

MakinoA

OzawaM

KimJH

Sakai-TagawaY

2009 Ostrich involvement in the selection of H5N1 influenza virus possessing mammalian-type amino acids in the PB2 protein. J Virol 83 13015 13018

11. KuzuharaT

KiseD

YoshidaH

HoritaT

MurazakiY

2009 Structural basis of the influenza A virus RNA polymerase PB2 RNA-binding domain containing the pathogenicity-determinant lysine 627 residue. J Biol Chem 284 6855 6860

12. TarendeauF

CrepinT

GuilligayD

RuigrokRW

CusackS

2008 Host determinant residue lysine 627 lies on the surface of a discrete, folded domain of influenza virus polymerase PB2 subunit. PLoS Pathog 4 e1000136

13. MehleA

DoudnaJA

2009 Adaptive strategies of the influenza virus polymerase for replication in humans. Proc Natl Acad Sci U S A

14. ItohY

ShinyaK

KisoM

WatanabeT

SakodaY

2009 In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses. Nature 460 1021 1025

15. OzawaM

FujiiK

MuramotoY

YamadaS

YamayoshiS

2007 Contributions of two nuclear localization signals of influenza A virus nucleoprotein to viral replication. J Virol 81 30 41

16. HerfstS

ChutinimitkulS

YeJ

de WitE

MunsterVJ

2010 Introduction of virulence markers in PB2 of pandemic swine-origin influenza virus does not result in enhanced virulence or transmission. J Virol 84 3752 3758

17. ZhuH

WangJ

WangP

SongW

ZhengZ

2010 Substitution of lysine at 627 position in PB2 protein does not change virulence of the 2009 pandemic H1N1 virus in mice. Virology 401 1 5

18. MainesTR

JayaramanA

BelserJA

WadfordDA

PappasC

2009 Transmission and pathogenesis of swine-origin 2009 A(H1N1) influenza viruses in ferrets and mice. Science 325 484 487

19. MunsterVJ

de WitE

van den BrandJM

HerfstS

SchrauwenEJ

2009 Pathogenesis and transmission of swine-origin 2009 A(H1N1) influenza virus in ferrets. Science 325 481 483

20. BrownEG

BaillyJE

1999 Genetic analysis of mouse-adapted influenza A virus identifies roles for the NA, PB1, and PB2 genes in virulence. Virus Res 61 63 76

21. YaoY

MingayLJ

McCauleyJW

BarclayWS

2001 Sequences in influenza A virus PB2 protein that determine productive infection for an avian influenza virus in mouse and human cell lines. J Virol 75 5410 5415

22. MehleA

DoudnaJA

2008 An inhibitory activity in human cells restricts the function of an avian-like influenza virus polymerase. Cell Host Microbe 4 111 122

23. KatzJM

WangM

WebsterRG

1990 Direct sequencing of the HA gene of influenza (H3N2) virus in original clinical samples reveals sequence identity with mammalian cell-grown virus. J Virol 64 1808 1811

24. NeumannG

WatanabeT

ItoH

WatanabeS

GotoH

1999 Generation of influenza A viruses entirely from cloned cDNAs. Proc Natl Acad Sci U S A 96 9345 9350

25. LorimerD

RaymondA

WalchliJ

MixonM

WallaceE

2009 Gene Composer: Database software for protein construct design, codon engineering, and gene synthesis. BMC Biotechnol 9 36

26. RaymondA

LovellS

LorimerD

WalchliJ

MixonM

2009 Combined protein construct and synthetic gene engineering for heterologous protein expression and crystallization using Gene Composer. BMC Biotechnol 9 37

27. KlockHE

KoesmaEJ

KnuthMW

LesleySA

2008 Combining the polymerase incomplete primer extension method for cloning and mutagenesis with microscreening to accelerate structural genomics efforts. Proteins 1 982 994

28. MylerPJ

StacyR

StewartL

StakerB

Van VoorhisWC

2009 The Seattle Structural Genomics Center for Infectious Disease (SSGCID). Infect Disord Drug Targets

29. MossessovaE

LimaCD

2000 Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol Cell 5 865 876

30. LiSJ

HochstrasserM

1999 A new protease required for cell-cycle progression in yeast. Nature 398 246 251

31. OtwinowskiZ

MinorW

1997 Processing of X-ray Diffraction Data Collected in Oscillation Mode Methonds in Enzymology 276 307 326

32. Collaborative Computational Project N 1994 The CCP4 Suite: Programs for Protein Crystallography. Acta Cryst D D50 760 763

33. MurshudovaGN

VaginAA

DodsonEJ

1997 Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallographica Section D-Biological Crystallography D53 240 255

34. EmsleyP

CowtanK

2004 Coot: model- building tools for molecular graphics. Acta Crystallographica Section D-Biological Crystallography 60 2126 2132

35. DeLanoWL

2002 The PyMOL User's Manual: DeLano Scientific, Palo Alto, CA, USA

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 8
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#