#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

SWAN-1 Binds to EGL-9 and Regulates HIF-1-Mediated Resistance to the Bacterial Pathogen PAO1


Pseudomonas aeruginosa is a nearly ubiquitous human pathogen, and infections can be lethal to patients with impaired respiratory and immune systems. Prior studies have established that strong loss-of-function mutations in the egl-9 gene protect the nematode C. elegans from P. aeruginosa PAO1 fast killing. EGL-9 inhibits the HIF-1 transcription factor via two pathways. First, EGL-9 is the enzyme that targets HIF-1 for oxygen-dependent degradation via the VHL-1 E3 ligase. Second, EGL-9 inhibits HIF-1-mediated gene expression through a VHL-1-independent mechanism. Here, we show that a loss-of-function mutation in hif-1 suppresses P. aeruginosa PAO1 resistance in egl-9 mutants. Importantly, we find stabilization of HIF-1 protein is not sufficient to protect C. elegans from P. aeruginosa PAO1 fast killing. However, mutations that inhibit both EGL-9 pathways result in higher levels of HIF-1 activity and confer resistance to the pathogen. Using forward genetic screens, we identify additional mutations that confer resistance to P. aeruginosa. In genetic backgrounds that stabilize C. elegans HIF-1 protein, loss-of-function mutations in swan-1 increase the expression of hypoxia response genes and protect C. elegans from P. aeruginosa fast killing. SWAN-1 is an evolutionarily conserved WD-repeat protein belonging to the AN11 family. Yeast two-hybrid and co-immunoprecipitation assays show that EGL-9 forms a complex with SWAN-1. Additionally, we present genetic evidence that the DYRK kinase MBK-1 acts downstream of SWAN-1 to promote HIF-1-mediated transcription and to increase resistance to P. aeruginosa. These data support a model in which SWAN-1, MBK-1 and EGL-9 regulate HIF-1 transcriptional activity and modulate resistance to P. aeruginosa PAO1 fast killing.


Vyšlo v časopise: SWAN-1 Binds to EGL-9 and Regulates HIF-1-Mediated Resistance to the Bacterial Pathogen PAO1. PLoS Pathog 6(8): e32767. doi:10.1371/journal.ppat.1001075
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1001075

Souhrn

Pseudomonas aeruginosa is a nearly ubiquitous human pathogen, and infections can be lethal to patients with impaired respiratory and immune systems. Prior studies have established that strong loss-of-function mutations in the egl-9 gene protect the nematode C. elegans from P. aeruginosa PAO1 fast killing. EGL-9 inhibits the HIF-1 transcription factor via two pathways. First, EGL-9 is the enzyme that targets HIF-1 for oxygen-dependent degradation via the VHL-1 E3 ligase. Second, EGL-9 inhibits HIF-1-mediated gene expression through a VHL-1-independent mechanism. Here, we show that a loss-of-function mutation in hif-1 suppresses P. aeruginosa PAO1 resistance in egl-9 mutants. Importantly, we find stabilization of HIF-1 protein is not sufficient to protect C. elegans from P. aeruginosa PAO1 fast killing. However, mutations that inhibit both EGL-9 pathways result in higher levels of HIF-1 activity and confer resistance to the pathogen. Using forward genetic screens, we identify additional mutations that confer resistance to P. aeruginosa. In genetic backgrounds that stabilize C. elegans HIF-1 protein, loss-of-function mutations in swan-1 increase the expression of hypoxia response genes and protect C. elegans from P. aeruginosa fast killing. SWAN-1 is an evolutionarily conserved WD-repeat protein belonging to the AN11 family. Yeast two-hybrid and co-immunoprecipitation assays show that EGL-9 forms a complex with SWAN-1. Additionally, we present genetic evidence that the DYRK kinase MBK-1 acts downstream of SWAN-1 to promote HIF-1-mediated transcription and to increase resistance to P. aeruginosa. These data support a model in which SWAN-1, MBK-1 and EGL-9 regulate HIF-1 transcriptional activity and modulate resistance to P. aeruginosa PAO1 fast killing.


Zdroje

1. LeeSC

HuaCC

YuTJ

ShiehWB

SeeLC

2005 Risk factors of mortality for nosocomial pneumonia: importance of initial anti-microbial therapy. Int J Clin Pract 59 39 45

2. GomezMI

PrinceA

2007 Opportunistic infections in lung disease: Pseudomonas infections in cystic fibrosis. Curr Opin Pharmacol 7 244 251

3. AndersonRD

RoddamLF

BettiolS

SandersonK

ReidDW

2010 Biosignificance of bacterial cyanogenesis in the CF lung. J Cyst Fibros 9 158 164

4. PageMG

HeimJ

2009 Prospects for the next anti-Pseudomonas drug. Curr Opin Pharmacol 9 558 565

5. PageMG

HeimJ

2009 New molecules from old classes: revisiting the development of beta-lactams. IDrugs 12 561 565

6. ShenC

NettletonD

JiangM

KimSK

Powell-CoffmanJA

2005 Roles of the HIF-1 hypoxia-inducible factor during hypoxia response in Caenorhabditis elegans. J Biol Chem 280 20580 20588

7. SemenzaGL

2001 Hypoxia-inducible factor 1: control of oxygen homeostasis in health and disease. Pediatr Res 49 614 617

8. NizetV

JohnsonRS

2009 Interdependence of hypoxic and innate immune responses. Nat Rev Immunol 9 609 617

9. HongSW

YooJW

KangHS

KimS

LeeDK

2009 HIF-1alpha-dependent gene expression program during the nucleic acid-triggered antiviral innate immune responses. Mol Cells 27 243 250

10. WalmsleySR

McGovernNN

WhyteMK

ChilversER

2008 The HIF/VHL pathway: from oxygen sensing to innate immunity. Am J Respir Cell Mol Biol 38 251 255

11. RiusJ

GumaM

SchachtrupC

AkassoglouK

ZinkernagelAS

2008 NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature 453 807 811

12. ZinkernagelAS

JohnsonRS

NizetV

2007 Hypoxia inducible factor (HIF) function in innate immunity and infection. J Mol Med 85 1339 1346

13. KurzCL

EwbankJJ

2000 Caenorhabditis elegans for the study of host-pathogen interactions. Trends Microbiol 8 142 144

14. AballayA

AusubelFM

2002 Caenorhabditis elegans as a host for the study of host-pathogen interactions. Curr Opin Microbiol 5 97 101

15. MylonakisE

AusubelFM

TangRJ

CalderwoodSB

2003 The art of serendipity: killing of Caenorhabditis elegans by human pathogens as a model of bacterial and fungal pathogenesis. Expert Rev Anti Infect Ther 1 167 173

16. EwbankJ

2003 The nematode Caenorhabditis elegans as a model for the study of host-pathogen interactions. J Soc Biol 197 375 378

17. AlegadoRA

CampbellMC

ChenWC

SlutzSS

TanMW

2003 Characterization of mediators of microbial virulence and innate immunity using the Caenorhabditis elegans host-pathogen model. Cell Microbiol 5 435 444

18. TanMW

2002 Identification of host and pathogen factors involved in virulence using Caenorhabditis elegans. Methods Enzymol 358 13 28

19. SchulenburgH

KurzCL

EwbankJJ

2004 Evolution of the innate immune system: the worm perspective. Immunol Rev 198 36 58

20. KimDH

AusubelFM

2005 Evolutionary perspectives on innate immunity from the study of Caenorhabditis elegans. Curr Opin Immunol 17 4 10

21. NicholasHR

HodgkinJ

2004 Responses to infection and possible recognition strategies in the innate immune system of Caenorhabditis elegans. Mol Immunol 41 479 493

22. EvansEA

KawliT

TanMW

2008 Pseudomonas aeruginosa suppresses host immunity by activating the DAF-2 insulin-like signaling pathway in Caenorhabditis elegans. PLoS Pathog 4 e1000175

23. TroemelER

ChuSW

ReinkeV

LeeSS

AusubelFM

2006 p38 MAPK regulates expression of immune response genes and contributes to longevity in C. elegans. PLoS Genet 2 e183

24. SinghV

AballayA

2006 Heat-shock transcription factor (HSF)-1 pathway required for Caenorhabditis elegans immunity. Proc Natl Acad Sci U S A 103 13092 13097

25. LawsTR

HardingSV

SmithMP

AtkinsTP

TitballRW

2004 Age influences resistance of Caenorhabditis elegans to killing by pathogenic bacteria. FEMS Microbiol Lett 234 281 287

26. KurzCL

TanMW

2004 Regulation of aging and innate immunity in C. elegans. Aging Cell 3 185 193

27. GallagherLA

ManoilC

2001 Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans by cyanide poisoning. J Bacteriol 183 6207 6214

28. DarbyC

CosmaCL

ThomasJH

ManoilC

1999 Lethal paralysis of Caenorhabditis elegans by Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96 15202 15207

29. TanMW

Mahajan-MiklosS

AusubelFM

1999 Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci U S A 96 715 720

30. BellierA

ChenCS

KaoCY

CinarHN

AroianRV

2009 Hypoxia and the hypoxic response pathway protect against pore-forming toxins in C. elegans. PLoS Pathog 5 e1000689

31. EpsteinAC

GleadleJM

McNeillLA

HewitsonKS

O'RourkeJ

2001 C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107 43 54

32. ShaoZ

ZhangY

Powell-CoffmanJA

2009 Two distinct roles for EGL-9 in the regulation of HIF-1-mediated gene expression in Caenorhabditis elegans. Genetics 183 821 829

33. ShenC

ShaoZ

Powell-CoffmanJA

2006 The Caenorhabditis elegans rhy-1 gene inhibits HIF-1 hypoxia-inducible factor activity in a negative feedback loop that does not include vhl-1. Genetics 174 1205 1214

34. ZhangY

ShaoZ

ZhaiZ

ShenC

Powell-CoffmanJA

2009 The HIF-1 hypoxia-inducible factor modulates lifespan in C. elegans. PLoS One 4 e6348

35. ChenD

ThomasEL

KapahiP

2009 HIF-1 modulates dietary restriction-mediated lifespan extension via IRE-1 in Caenorhabditis elegans. PLoS Genet 5 e1000486

36. MehtaR

SteinkrausKA

SutphinGL

RamosFJ

ShamiehLS

2009 Proteasomal regulation of the hypoxic response modulates aging in C. elegans. Science 324 1196 1198

37. TreininM

ShliarJ

JiangH

Powell-CoffmanJA

BrombergZ

2003 HIF-1 is required for heat acclimation in the nematode Caenorhabditis elegans. Physiol Genomics 14 17 24

38. YangY

LuJ

RovnakJ

QuackenbushSL

LundquistEA

2006 SWAN-1, a Caenorhabditis elegans WD repeat protein of the AN11 family, is a negative regulator of Rac GTPase function. Genetics 174 1917 1932

39. BishopT

LauKW

EpsteinAC

KimSK

JiangM

2004 Genetic analysis of pathways regulated by the von Hippel-Lindau tumor suppressor in Caenorhabditis elegans. PLoS Biol 2 e289

40. DresselA

HemlebenV

2009 Transparent Testa Glabra 1 (TTG1) and TTG1-like genes in Matthiola incana R. Br. and related Brassicaceae and mutation in the WD-40 motif. Plant Biol (Stuttg) 11 204 212

41. NissenRM

AmsterdamA

HopkinsN

2006 A zebrafish screen for craniofacial mutants identifies wdr68 as a highly conserved gene required for endothelin-1 expression. BMC Dev Biol 6 28

42. SkuratAV

DietrichAD

2004 Phosphorylation of Ser640 in muscle glycogen synthase by DYRK family protein kinases. J Biol Chem 279 2490 2498

43. de VettenN

QuattrocchioF

MolJ

KoesR

1997 The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants, and animals. Genes Dev 11 1422 1434

44. HoY

GruhlerA

HeilbutA

BaderGD

MooreL

2002 Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415 180 183

45. BuddeMW

RothMB

2010 Hydrogen sulfide increases hypoxia-inducible factor-1 activity independently of von Hippel-Lindau tumor suppressor-1 in C. elegans. Mol Biol Cell 21 212 217

46. CooperCE

BrownGC

2008 The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance. J Bioenerg Biomembr 40 533 539

47. AnyanfulA

Dolan-LivengoodJM

LewisT

ShethS

DezaliaMN

2005 Paralysis and killing of Caenorhabditis elegans by enteropathogenic Escherichia coli requires the bacterial tryptophanase gene. Mol Microbiol 57 988 1007

48. MazmanianG

KovshilovskyM

YenD

MohantyA

MohantyS

2010 The zebrafish dyrk1b gene is important for endoderm formation. Genesis 48 20 30

49. ParkJ

SongWJ

ChungKC

2009 Function and regulation of Dyrk1A: towards understanding Down syndrome. Cell Mol Life Sci 66 3235 3240

50. SmithDJ

StevensME

SudanaguntaSP

BronsonRT

MakhinsonM

1997 Functional screening of 2 Mb of human chromosome 21q22.2 in transgenic mice implicates minibrain in learning defects associated with Down syndrome. Nat Genet 16 28 36

51. ShindohN

KudohJ

MaedaH

YamakiA

MinoshimaS

1996 Cloning of a human homolog of the Drosophila minibrain/rat Dyrk gene from “the Down syndrome critical region” of chromosome 21. Biochem Biophys Res Commun 225 92 99

52. AltafajX

DierssenM

BaamondeC

MartiE

VisaJ

2001 Neurodevelopmental delay, motor abnormalities and cognitive deficits in transgenic mice overexpressing Dyrk1A (minibrain), a murine model of Down′s syndrome. Hum Mol Genet 10 1915 1923

53. MoritaK

Lo CelsoC

Spencer-DeneB

ZouboulisCC

WattFM

2006 HAN11 binds mDia1 and controls GLI1 transcriptional activity. J Dermatol Sci 44 11 20

54. BrennerS

1974 The genetics of Caenorhabditis elegans. Genetics 77 71 94

55. GrangerL

MartinE

SegalatL

2004 Mos as a tool for genome-wide insertional mutagenesis in Caenorhabditis elegans: results of a pilot study. Nucleic Acids Res 32 e117

56. DavisMW

HammarlundM

HarrachT

HullettP

OlsenS

2005 Rapid single nucleotide polymorphism mapping in C. elegans. BMC Genomics 6 118

57. GietzD

St JeanA

WoodsRA

SchiestlRH

1992 Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20 1425

58. SchiestlRH

GietzRD

1989 High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet 16 339 346

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 8
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#