The Proteasome Active Site Threonine Is Essential for Persistence Yet Dispensable for Replication and Resistance to Nitric Oxide


Previous work revealed that conditional depletion of the core proteasome subunits PrcB and PrcA impaired growth of Mycobacterium tuberculosis in vitro and in mouse lungs, caused hypersusceptibility to nitric oxide (NO) and impaired persistence of the bacilli during chronic mouse infections. Here, we show that genetic deletion of prcBA led to similar phenotypes. Surprisingly, however, an active site mutant proteasome complemented the in vitro and in vivo growth defects of the prcBA knockout (ΔprcBA) as well as its NO hypersensitivity. In contrast, long-term survival of M. tuberculosis in stationary phase and during starvation in vitro and in the chronic phase of mouse infection required a proteolytically active proteasome. Inhibition of inducible nitric oxide synthase did not rescue survival of ΔprcBA, revealing a function beyond NO defense, by which the proteasome contributes to M. tuberculosis fitness during chronic mouse infections. These findings suggest that proteasomal proteolysis facilitates mycobacterial persistence, that M. tuberculosis faces starvation during chronic mouse infections and that the proteasome serves a proteolysis-independent function.


Vyšlo v časopise: The Proteasome Active Site Threonine Is Essential for Persistence Yet Dispensable for Replication and Resistance to Nitric Oxide. PLoS Pathog 6(8): e32767. doi:10.1371/journal.ppat.1001040
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1001040

Souhrn

Previous work revealed that conditional depletion of the core proteasome subunits PrcB and PrcA impaired growth of Mycobacterium tuberculosis in vitro and in mouse lungs, caused hypersusceptibility to nitric oxide (NO) and impaired persistence of the bacilli during chronic mouse infections. Here, we show that genetic deletion of prcBA led to similar phenotypes. Surprisingly, however, an active site mutant proteasome complemented the in vitro and in vivo growth defects of the prcBA knockout (ΔprcBA) as well as its NO hypersensitivity. In contrast, long-term survival of M. tuberculosis in stationary phase and during starvation in vitro and in the chronic phase of mouse infection required a proteolytically active proteasome. Inhibition of inducible nitric oxide synthase did not rescue survival of ΔprcBA, revealing a function beyond NO defense, by which the proteasome contributes to M. tuberculosis fitness during chronic mouse infections. These findings suggest that proteasomal proteolysis facilitates mycobacterial persistence, that M. tuberculosis faces starvation during chronic mouse infections and that the proteasome serves a proteolysis-independent function.


Zdroje

1. ArrigoAP

TanakaK

GoldbergAL

WelchWJ

1988 Identity of the 19S ‘prosome’ particle with the large multifunctional protease complex of mammalian cells (the proteasome). Nature 331 192 194

2. BaumeisterW

DahlmannB

HegerlR

KoppF

KuehnL

1988 Electron microscopy and image analysis of the multicatalytic proteinase. FEBS Lett 241 239 245

3. KisselevAF

SongyangZ

GoldbergAL

2000 Why does threonine, and not serine, function as the active site nucleophile in proteasomes? J Biol Chem 275 14831 14837

4. LupasA

ZuhlF

TamuraT

WolfS

NagyI

1997 Eubacterial proteasomes. Mol Biol Rep 24 125 131

5. De MotR

NagyI

WalzJ

BaumeisterW

1999 Proteasomes and other self-compartmentalizing proteases in prokaryotes. Trends Microbiol 7 88 92

6. GottesmanS

2003 Proteolysis in bacterial regulatory circuits. Annu Rev Cell Dev Biol 19 565 587

7. ColeST

BroschR

ParkhillJ

GarnierT

ChurcherC

1998 Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393 537 544

8. DarwinKH

EhrtS

Gutierrez-RamosJC

WeichN

NathanCF

2003 The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide. Science 302 1963 1966

9. DarwinKH

LinG

ChenZ

LiH

NathanCF

2005 Characterization of a Mycobacterium tuberculosis proteasomal ATPase homologue. Mol Microbiol 55 561 571

10. NeuwaldAF

AravindL

SpougeJL

KooninEV

1999 AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 9 27 43

11. HuG

LinG

WangM

DickL

XuRM

2006 Structure of the Mycobacterium tuberculosis proteasome and mechanism of inhibition by a peptidyl boronate. Mol Microbiol 59 1417 1428

12. LinG

HuG

TsuC

KunesYZ

LiH

2006 Mycobacterium tuberculosis prcBA genes encode a gated proteasome with broad oligopeptide specificity. Mol Microbiol 59 1405 1416

13. Cerda-MairaF

DarwinKH

2009 The Mycobacterium tuberculosis proteasome: more than just a barrel-shaped protease. Microbes Infect 11 1150 1155

14. WangT

LiH

LinG

TangC

LiD

2009 Structural insights on the Mycobacterium tuberculosis proteasomal ATPase Mpa. Structure 17 1377 1385

15. KerscherO

FelberbaumR

HochstrasserM

2006 Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 22 159 180

16. PearceMJ

MintserisJ

FerreyraJ

GygiSP

DarwinKH

2008 Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis. Science 322 1104 1107

17. BurnsKE

LiuWT

BoshoffHI

DorresteinPC

BarryCE3rd

2009 Proteasomal protein degradation in Mycobacteria is dependent upon a prokaryotic ubiquitin-like protein. J Biol Chem 284 3069 3075

18. StriebelF

ImkampF

SutterM

SteinerM

MamedovA

2009 Bacterial ubiquitin-like modifier Pup is deamidated and conjugated to substrates by distinct but homologous enzymes. Nat Struct Mol Biol 16 647 651

19. ImkampF

RosenbergerT

StriebelF

KellerPM

AmstutzB

2009 Deletion of dop in Mycobacterium smegmatis abolishes pupylation of protein substrates in vivo. Mol Microbiol 75 744 754

20. StriebelF

HunkelerM

SummerH

Weber-BanE

2010 The mycobacterial Mpa-proteasome unfolds and degrades pupylated substrates by engaging Pup's N-terminus. EMBO J

21. FestaRA

McAllisterF

PearceMJ

MintserisJ

BurnsKE

2010 Prokayrotic ubiquitin-like protein (Pup) proteome of Mycobacterium tuberculosis. PLoS One 5 e8589

22. WatrousJ

BurnsK

LiuWT

PatelA

HookV

2010 Expansion of the mycobacterial “PUPylome”. Mol Biosyst 6 376 385

23. RheeKY

Erdjument-BromageH

TempstP

NathanCF

2005 S-nitroso proteome of Mycobacterium tuberculosis: Enzymes of intermediary metabolism and antioxidant defense. Proc Natl Acad Sci U S A 102 467 472

24. GandotraS

SchnappingerD

MonteleoneM

HillenW

EhrtS

2007 In vivo gene silencing identifies the Mycobacterium tuberculosis proteasome as essential for the bacteria to persist in mice. Nature Medicine 13 1515 1520

25. SassettiCM

BoydDH

RubinEJ

2003 Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48 77 84

26. MacMickingJD

NorthRJ

LaCourseR

MudgettJS

ShahSK

1997 Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci U S A 94 5243 5248

27. MooreWM

WebberRK

JeromeGM

TjoengFS

MiskoTP

1994 L-N6-(1-iminoethyl)lysine: a selective inhibitor of inducible nitric oxide synthase. J Med Chem 37 3886 3888

28. StengerS

ThuringH

RollinghoffM

ManningP

BogdanC

1995 L-N6-(1-iminoethyl)-lysine potently inhibits inducible nitric oxide synthase and is superior to NG-monomethyl-arginine in vitro and in vivo. Eur J Pharmacol 294 703 712

29. SeemullerE

LupasA

BaumeisterW

1996 Autocatalytic processing of the 20S proteasome. Nature 382 468 471

30. SeemullerE

LupasA

StockD

LoweJ

HuberR

1995 Proteasome from Thermoplasma acidophilum: a threonine protease. Science 268 579 582

31. ZuhlF

SeemullerE

GolbikR

BaumeisterW

1997 Dissecting the assembly pathway of the 20S proteasome. FEBS Lett 418 189 194

32. ZwicklP

KleinzJ

BaumeisterW

1994 Critical elements in proteasome assembly. Nat Struct Biol 1 765 770

33. PearceMJ

AroraP

FestaRA

Butler-WuSM

GokhaleRS

2006 Identification of substrates of the Mycobacterium tuberculosis proteasome. EMBO J 25 5423 5432

34. DamerauK

St JohnAC

1993 Role of Clp protease subunits in degradation of carbon starvation proteins in Escherichia coli. J Bacteriol 175 53 63

35. KurodaA

NomuraK

OhtomoR

KatoJ

IkedaT

2001 Role of inorganic polyphosphate in promoting ribosomal protein degradation by the Lon protease in E. coli. Science 293 705 708

36. DahlmannB

2007 Role of proteasomes in disease. BMC Biochem 8 Suppl 1 S3

37. JungT

CatalgolB

GruneT

2009 The proteasomal system. Mol Aspects Med 30 191 296

38. RueppA

EckerskornC

BogyoM

BaumeisterW

1998 Proteasome function is dispensable under normal but not under heat shock conditions in Thermoplasma acidophilum. FEBS Lett 425 87 90

39. HongB

WangL

LammertynE

GeukensN

Van MellaertL

2005 Inactivation of the 20S proteasome in Streptomyces lividans and its influence on the production of heterologous proteins. Microbiology 151 3137 3145

40. KnipferN

ShraderTE

1997 Inactivation of the 20S proteasome in Mycobacterium smegmatis. Mol Microbiol 25 375 383

41. NagyI

BanerjeeT

TamuraT

SchoofsG

GilsA

2003 Characterization of a novel intracellular endopeptidase of the alpha/beta hydrolase family from Streptomyces coelicolor A3(2). J Bacteriol 185 496 503

42. DarwinKH

2009 Prokaryotic ubiquitin-like protein (Pup), proteasomes and pathogenesis. Nat Rev Microbiol 7 485 491

43. ChenZJ

SunLJ

2009 Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell 33 275 286

44. FerdousA

KodadekT

JohnstonSA

2002 A nonproteolytic function of the 19S regulatory subunit of the 26S proteasome is required for efficient activated transcription by human RNA polymerase II. Biochemistry 41 12798 12805

45. NishiyamaA

TachibanaK

IgarashiY

YasudaH

TanahashiN

2000 A nonproteolytic function of the proteasome is required for the dissociation of Cdc2 and cyclin B at the end of M phase. Genes Dev 14 2344 2357

46. BettsJC

LukeyPT

RobbLC

McAdamRA

DuncanK

2002 Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 43 717 731

47. NykaW

1974 Studies on the effect of starvation on mycobacteria. Infect Immun 9 843 850

48. WayneLG

HayesLG

1996 An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun 64 2062 2069

49. LoebelRO

ShorrE

RichardsonHB

1933 The Influence of Adverse Conditions upon the Respiratory Metabolism and Growth of Human Tubercle Bacilli. J Bacteriol 26 167 200

50. LoebelRO

ShorrE

RichardsonHB

1933 The Influence of Foodstuffs upon the Respiratory Metabolism and Growth of Human Tubercle Bacilli. J Bacteriol 26 139 166

51. FenhallsG

StevensL

MosesL

BezuidenhoutJ

BettsJC

2002 In situ detection of Mycobacterium tuberculosis transcripts in human lung granulomas reveals differential gene expression in necrotic lesions. Infect Immun 70 6330 6338

52. DahlJL

KrausCN

BoshoffHI

DoanB

FoleyK

2003 The role of Rel Mtb-mediated adaptation to stationary phase in long-term persistence of Mycobacterium tuberculosis in mice. Proc Natl Acad Sci U S A 100 10026 10031

53. PrimmTP

AndersenSJ

MizrahiV

AvarbockD

RubinH

2000 The stringent response of Mycobacterium tuberculosis is required for long-term survival. J Bacteriol 182 4889 4898

54. StallingsCL

StephanouNC

ChuL

HochschildA

NickelsBE

2009 CarD is an essential regulator of rRNA transcription required for Mycobacterium tuberculosis persistence. Cell 138 146 159

55. KurodaA

TanakaS

IkedaT

KatoJ

TakiguchiN

1999 Inorganic polyphosphate kinase is required to stimulate protein degradation and for adaptation to amino acid starvation in Escherichia coli. Proc Natl Acad Sci U S A 96 14264 14269

56. NystromT

2002 Translational fidelity, protein oxidation, and senescence: lessons from bacteria. Ageing Res Rev 1 693 703

57. VabulasRM

HartlFU

2005 Protein synthesis upon acute nutrient restriction relies on proteasome function. Science 310 1960 1963

58. BardarovS

KriakovJ

CarriereC

YuSW

VaamondeC

1997 Conditionally replicating mycobacteriophages: A system for transposon delivery to Mycobacterium tuberculosis. Proceedings Of The National Academy Of Sciences Of The United States Of America 94 10961 10966

59. EhrtS

GuoXV

HickeyCM

RyouM

MonteleoneM

2005 Controlling gene expression in mycobacteria with anhydrotetracycline and Tet repressor. Nucleic Acids Res 33 e21

60. DumontM

WilleE

CalingasanNY

NathanC

Flint BealM

2010 N-iminoethyl-L-lysine improves memory and reduces amyloid pathology in a transgenic mouse model of amyloid deposition. Neurochem Int 56 345 351

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 8
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa