#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Rhomboid 4 (ROM4) Affects the Processing of Surface Adhesins and Facilitates Host Cell Invasion by


Host cell attachment by Toxoplasma gondii is dependent on polarized secretion of apical adhesins released from the micronemes. Subsequent translocation of these adhesive complexes by an actin-myosin motor powers motility and host cell invasion. Invasion and motility are also accompanied by shedding of surface adhesins by intramembrane proteolysis. Several previous studies have implicated rhomboid proteases in this step; however, their precise roles in vivo have not been elucidated. Using a conditional knockout strategy, we demonstrate that TgROM4 participates in processing of surface adhesins including MIC2, AMA1, and MIC3. Suppression of TgROM4 led to decreased release of the adhesin MIC2 into the supernatant and concomitantly increased the surface expression of this and a subset of other adhesins. Suppression of TgROM4 resulted in disruption of normal gliding, with the majority of parasites twirling on their posterior ends. Parasites lacking TgROM4 bound better to host cells, but lost the ability to apically orient and consequently most failed to generate a moving junction; hence, invasion was severely impaired. Our findings indicate that TgROM4 is involved in shedding of micronemal proteins from the cell surface. Down regulation of TgROM4 disrupts the normal apical-posterior gradient of adhesins that is important for efficient cell motility and invasion of host cells by T. gondii.


Vyšlo v časopise: Rhomboid 4 (ROM4) Affects the Processing of Surface Adhesins and Facilitates Host Cell Invasion by. PLoS Pathog 6(4): e32767. doi:10.1371/journal.ppat.1000858
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1000858

Souhrn

Host cell attachment by Toxoplasma gondii is dependent on polarized secretion of apical adhesins released from the micronemes. Subsequent translocation of these adhesive complexes by an actin-myosin motor powers motility and host cell invasion. Invasion and motility are also accompanied by shedding of surface adhesins by intramembrane proteolysis. Several previous studies have implicated rhomboid proteases in this step; however, their precise roles in vivo have not been elucidated. Using a conditional knockout strategy, we demonstrate that TgROM4 participates in processing of surface adhesins including MIC2, AMA1, and MIC3. Suppression of TgROM4 led to decreased release of the adhesin MIC2 into the supernatant and concomitantly increased the surface expression of this and a subset of other adhesins. Suppression of TgROM4 resulted in disruption of normal gliding, with the majority of parasites twirling on their posterior ends. Parasites lacking TgROM4 bound better to host cells, but lost the ability to apically orient and consequently most failed to generate a moving junction; hence, invasion was severely impaired. Our findings indicate that TgROM4 is involved in shedding of micronemal proteins from the cell surface. Down regulation of TgROM4 disrupts the normal apical-posterior gradient of adhesins that is important for efficient cell motility and invasion of host cells by T. gondii.


Zdroje

1. SibleyLD

2004 Invasion strategies of intracellular parasites. Science 304 248 253

2. DobrowolskiJM

SibleyLD

1996 Toxoplasma invasion of mammalian cells is powered by the actin cytoskeleton of the parasite. Cell 84 933 939

3. SahooN

BeattyWL

HeuserJE

SeptD

SibleyLD

2006 Unusual kinetic and structural properties control rapid assembly and turnover of actin in the parasite Toxoplasma gondii. Mol Biol Cell 17 895 906

4. GaskinsE

GilkS

DeVoreN

MannT

WardGE

2004 Identification of the membrane receptor of a class XIV myosin Toxoplasma gondii. J Cell Biol 165 383 393

5. MeissnerM

SchluterD

SoldatiD

2002 Role of Toxoplasma gondii myosin A in powering parasite gliding and host cell invasion. Science 298 837 840

6. BarraganA

SibleyLD

2002 Transepithelial migration of Toxoplasma gondii is linked to parasite motility and virulence. J Exp Med 195 1625 1633

7. MorisakiJH

HeuserJE

SibleyLD

1995 Invasion of Toxoplasma gondii occurs by active penetration of the host cell. J Cell Sci 108 2457 2464

8. ForneyJR

VaughanDK

YangS

HealeyMC

1998 Actin-dependent motility in Cryptosporidium parvum sporozoites. J Parasitol 84 908 913

9. WetzelDM

SchmidtJ

KuhlenschmidtM

DubeyJP

SibleyLD

2005 Gliding motility leads to active cellular invasion by Cryptosporidium parvum sporozoites. Infect Immun 73 5379 5387

10. AminoR

ThibergeS

MartinB

CelliS

ShorteS

2006 Quantitative imaging of Plasmodium transmission from mosquito to mammal. Nat Med 12 220 224

11. CarruthersVB

SibleyLD

1997 Sequential protein secretion from three distinct organelles of Toxoplasma gondii accompanies invasion of human fibroblasts. Eur J Cell Biol 73 114 123

12. AikawaM

MillerLH

JohnsonJ

RabbegeJ

1978 Erythrocyte entry by malarial parasites: a moving junction between erythrocyte and parasite. J Cell Biol 77 72 82

13. AlexanderDL

MitalJ

WardGE

BradleyPJ

BoothroydJC

2005 Identification of the moving junction complex of Toxoplasma gondii: a collaboration between distinct secretory organelles. PLoS Pathog 1 e17 doi:10.1371/journal.ppat.0010017

14. LebrunM

MichelinA

El HajjH

PoncetJ

BradleyPJ

2005 The rhoptry neck protein RON4 relocalizes at the moving junction during Toxoplasma gondii invasion. Cell Micro 7 1823 1833

15. BesteiroS

MichelinA

PoncetJ

DubremetzJ

LebrunM

2009 Export of a Toxoplasma gondii rhoptry neck protein complex at the host cell membrane to form the moving junction during invasion. PLoS Pathog 5 e1000309 doi:10.1371/journal.ppat.1000309

16. StraubKW

ChengSJ

SohnCS

BradleyPJ

2009 Novel components of the apicomplexan moving junction reveal conserved and coccidia-restricted elements. Cell Microbiol 11 590 603

17. CarruthersVB

TomleyFM

2008 Microneme proteins in apicomplexans. Subcell Biochem 47 33 45

18. LovettJL

SibleyLD

2003 Intracellular calcium stores in Toxoplasma gondii govern invasion of host cells. J Cell Sci 116 3009 3016

19. CarruthersVB

SibleyLD

1999 Mobilization of intracellular calcium stimulates microneme discharge in Toxoplasma gondii. Mol Microbiol 31 421 428

20. MitalJ

MeissnerM

SoldatiD

WardGE

2005 Conditional expression of Toxoplasma gondii apical membrane antigen-1 (TgAMA1) demonstrates that TgAMA1 plays a critical role in host cell invasion. Mol Biol Cell 16 4341 4349

21. KesslerH

Herm-GötzA

HeggeS

RauchM

Soldati-FavreD

2008 Microneme protein 8 - a new essential invasion factor in Toxoplasma gondii. J Cell Sci 121 947 956

22. WanKL

CarruthersVB

SibleyLD

AjiokaJW

1997 Molecular characterisation of an expressed sequence tag locus of Toxoplasma gondii encoding the micronemal protein MIC2. Mol Biochem Parasitol 84 203 214

23. HuynhMH

CarruthersVB

2006 Toxoplasma MIC2 is a major determinant of invasion and virulence. PLoS Pathog 2 e84 doi:10.1371/journal.ppat.0020084

24. KappeS

BrudererT

GanttS

FujiokaH

NussenzweigV

1999 Conservation of a gliding motility and cell invasion machinery in apicomplexan parasites. J Cell Biol 147 937 943

25. MatuschewskiK

NunesAC

NussenzweigV

MénardR

2002 Plasmodium sporozoite invasion into insect and mamalian cells is directed by the same dual binding system. EMBO J 21 1597 1606

26. SultanAA

ThathyV

FrevertU

RobsonKJH

CrisantiA

1997 TRAP is necessary for gliding motility and infectivity of Plasmodium sporozoites. Cell 90 511 522

27. WengelnikK

SpaccapeloR

NaitzaS

RobsonKJH

JanseCJ

1999 The A-domain and the thrombospondin-related motif of Plasmodium falciparum TRAP are implicated in the invasion process of mosquito salivary glands. EMBO J 18 5195 5204

28. BuscagliaCA

CoppensI

HolWGJ

NussenzweigV

2003 Site of interaction between aldolase and thrombospondin-related anonymous protein in Plasmodium. Mol Biol Cell 14 4947 4957

29. JewettTJ

SibleyLD

2003 Aldolase forms a bridge between cell surface adhesins and the actin cytoskeleton in apicomplexan parasites. Molec Cell 11 885 894

30. StarnesGL

CoinconM

SyguschJ

SibleyLD

2009 Aldolase is essential for energy production and bridging adhesin-actin cytoskeletal interactions during parasite invasion of host cells. Cell Host Microbe 5 353 364

31. CarruthersVB

ShermanGD

SibleyLD

2000 The Toxoplasma adhesive protein MIC2 is proteolytically processed at multiple sites by two parasite-derived proteases. J Biol Chem 275 14346 14353

32. BarraganA

BrossierF

SibleyLD

2005 Transepithelial migration of Toxoplasma gondii involves an interaction of intercellular adhesion molecule 1 (ICAM-1) with the parasite adhesin MIC2. Cell Microbiol 7 561 568

33. OpitzC

Di CristinaM

ReissM

RuppertT

CrisantiA

2002 Intramembrane cleavage of the microneme proteins at the surface of apicomplexan parasite Toxoplasma gondii. EMBO J 21 1577 1585

34. ZhouXW

BlackmanMJ

HowellSA

CarruthersVB

2004 Proteomic analysis of cleavage events reveals a dynamic two-step mechanism for proteolysis of a key parasite adhesive complex. Molec Cell Proteomics 3 565 576

35. BakerRP

WijetilakaR

UrbanS

2006 Two Plasmodium rhomboid proteases preferentially cleave different adhesins implicated in all invasive stages of malaria. PLoS Pathog 2 e113 doi:10.1371/journal.ppat.0020113

36. KooninEV

MakarovaKS

RogozinIB

DavidovicL

LetellierMC

2003 The rhomboids: a nearly ubiquitous family of intramembrane serine proteases that probably evolved by multiple ancient horizontal gene transfers. Genome Biol 4 R19

37. UrbanS

FreemanM

2003 Substrate specificity of rhomboid intramembrane proteases is governed by helix-breaking residues in the substrate transmembrane domain. Mol Cell 11 1425 1434

38. BrossierF

JewettTJ

SibleyLD

UrbanS

2005 A spatially-localized rhomboid protease cleaves cell surface adhesins essential for invasion by Toxoplasma. Proc Natl Acad Sci (USA) 102 4146 4151

39. DowseT

SoldatiD

2005 Rhomboid-like proteins in Apicomplexa: phylogeny and nomenclature. Trends Parasitol 35 747 756

40. BrossierF

StarnesGL

BeattyWL

SibleyLD

2008 Microneme rhomboid protease TgROM1 is required for efficient intracellular growth of Toxoplasma gondii. Euk Cell 7 664 674

41. DowseTJ

PascallJC

BrownKD

SoldatiD

2005 Apicomplexan rhomboids have a potential role in microneme protein cleavage during host cell invasion. Intl J Parasitol 35 747 756

42. RoosDS

DonaldRGK

MorrissetteNS

MoultonAL

1994 Molecular tools for genetic dissection of the protozoan parasite Toxoplasma gondii. Methods Cell Biol 45 28 61

43. PlattnerF

YarovinskyF

RomeroS

DidryD

CarlierMF

2008 Toxoplasma profilin is essential for host cell invasion and TLR11-dependent induction of an interleukin-12 response. Cell Host Microbe 3 77 87

44. HåkanssonS

MorisakiH

HeuserJE

SibleyLD

1999 Time-lapse video microscopy of gliding motility in Toxoplasma gondii reveals a novel, biphasic mechanism of cell locomotion. Mol Biol Cell 10 3539 3547

45. WetzelDM

HåkanssonS

HuK

RoosDS

SibleyLD

2003 Actin filament polymerization regulates gliding motility by apicomplexan parasites. Mol Biol Cell 14 396 406

46. CarruthersVB

GiddingsOK

SibleyLD

1999 Secretion of micronemal proteins is associated with Toxoplasma invasion of host cells. Cell Microbiol 1 225 236

47. CarruthersVB

MorenoSNJ

SibleyLD

1999 Ethanol and acetaldehyde elevate intracellular [Ca2+] calcium and stimulate microneme discharge in Toxoplasma gondii. Biochem J 342 379 386

48. BrossierF

JewettTJ

LovettJL

SibleyLD

2003 C-terminal processing of the Toxoplasma protein MIC2 is essential for invasion into host cells. J Biol Chem 278 6229 6234

49. MeissnerM

BrechtS

BujardH

SoldatiD

2001 Modulation of myosin A expression by a newly established tetracycline repressor based inducible system in Toxoplasma gondii. Nuc Acids Res 29 E115

50. FoxBA

RistucciaJG

GigleyJP

BzikDJ

2009 Efficient gene replacements in Toxoplasma gondii strains deficient for nonhomologous end joining. Eukaryot Cell 8 520 529

51. MeissnerM

ReissM

ViebigN

CarruthersVB

TourselC

2001 A family of transmembrane microneme proteins of Toxoplasma gondii contain EGF-like domains and function as escorters. J Cell Sci 115 563 574

52. ReissM

ViebigN

BrechtS

FourmauxM

SoeteM

2001 Identification and characterization of an escorter for two secretory adhesins in Toxoplasma gondii. J Cell Biol 152 563 578

53. UrbanS

SchlieperD

FreemanM

2002 Conservation of intramembrane proteolytic activity and substrate specificity in prokaryotic and eukaryotic rhomboids. Curr Biol 12 1507 1512

54. CarruthersVB

BoothroydJC

2007 Pulling together: an integrated model of Toxoplasma cell invasion. Curr Opin Microbiol 10 83 89

55. SbalzariniIF

KoumoutsakosP

2005 Feature point tracking and trajectory analysis for video imaging in cell biology. J Structural Biol 15 182 195

56. DobrowolskiJM

NiesmanIR

SibleyLD

1997 Actin in the parasite Toxoplasma gondii is encoded by a single copy gene, ACT1 and exists primarily in a globular form. Cell Motil Cytoskel 37 253 262

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#