#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Peptide Inhibitors of Dengue-Virus Entry Target a Late-Stage Fusion Intermediate


The mechanism of membrane fusion by “class II” viral fusion proteins follows a pathway that involves large-scale domain rearrangements of the envelope glycoprotein (E) and a transition from dimers to trimers. The rearrangement is believed to proceed by an outward rotation of the E ectodomain after loss of the dimer interface, followed by a reassociation into extended trimers. The ∼55-aa-residue, membrane proximal “stem” can then zip up along domain II, bringing together the transmembrane segments of the C-terminus and the fusion loops at the tip of domain II. We find that peptides derived from the stem of dengue-virus E bind stem-less E trimer, which models a conformational intermediate. In vitro assays demonstrate that these peptides specifically block viral fusion. The peptides inhibit infectivity with potency proportional to their affinity for the conformational intermediate, even when free peptide is removed from a preincubated inoculum before infecting cells. We conclude that peptides bind virions before attachment and are carried with virions into endosomes, the compartment in which acidification initiates fusion. Binding depends on particle dynamics, as there is no inhibition of infectivity if preincubation and separation are at 4°C rather than 37°C. We propose a two-step model for the mechanism of fusion inhibition. Targeting a viral entry pathway can be an effective way to block infection. Our data, which support and extend proposed mechanisms for how the E conformational change promotes membrane fusion, suggest strategies for inhibiting flavivirus entry.


Vyšlo v časopise: Peptide Inhibitors of Dengue-Virus Entry Target a Late-Stage Fusion Intermediate. PLoS Pathog 6(4): e32767. doi:10.1371/journal.ppat.1000851
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1000851

Souhrn

The mechanism of membrane fusion by “class II” viral fusion proteins follows a pathway that involves large-scale domain rearrangements of the envelope glycoprotein (E) and a transition from dimers to trimers. The rearrangement is believed to proceed by an outward rotation of the E ectodomain after loss of the dimer interface, followed by a reassociation into extended trimers. The ∼55-aa-residue, membrane proximal “stem” can then zip up along domain II, bringing together the transmembrane segments of the C-terminus and the fusion loops at the tip of domain II. We find that peptides derived from the stem of dengue-virus E bind stem-less E trimer, which models a conformational intermediate. In vitro assays demonstrate that these peptides specifically block viral fusion. The peptides inhibit infectivity with potency proportional to their affinity for the conformational intermediate, even when free peptide is removed from a preincubated inoculum before infecting cells. We conclude that peptides bind virions before attachment and are carried with virions into endosomes, the compartment in which acidification initiates fusion. Binding depends on particle dynamics, as there is no inhibition of infectivity if preincubation and separation are at 4°C rather than 37°C. We propose a two-step model for the mechanism of fusion inhibition. Targeting a viral entry pathway can be an effective way to block infection. Our data, which support and extend proposed mechanisms for how the E conformational change promotes membrane fusion, suggest strategies for inhibiting flavivirus entry.


Zdroje

1. HarrisonSC

2008 Viral membrane fusion. Nat Struct Mol Biol 15 690 698

2. van der SchaarHM

RustMJ

ChenC

van der Ende-MetselaarH

WilschutJ

2008 Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells. PLoS Pathog 4 e1000244 doi:10.1371/journal.ppat.1000244

3. van der SchaarHM

RustMJ

WaartsBL

van der Ende-MetselaarH

KuhnRJ

2007 Characterization of the early events in dengue virus cell entry by biochemical assays and single-virus tracking. J Virol 81 12019 12028

4. FritzR

StiasnyK

HeinzFX

2008 Identification of specific histidines as pH sensors in flavivirus membrane fusion. J Cell Biol 183 353 361

5. LindenbachBDRC

2001 Flaviviridae: The viruses and their replication Philadelphia Lippincott Williams & Wilkins 991 1041

6. YuIM

ZhangW

HoldawayHA

LiL

KostyuchenkoVA

2008 Structure of the immature dengue virus at low pH primes proteolytic maturation. Science 319 1834 1837

7. ZhangW

ChipmanPR

CorverJ

JohnsonPR

ZhangY

2003 Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nat Struct Biol 10 907 912

8. AllisonSL

SchalichJ

StiasnyK

MandlCW

KunzC

1995 Oligomeric rearrangement of tick-borne encephalitis virus envelope proteins induced by an acidic pH. J Virol 69 695 700

9. ReyFA

HeinzFX

MandlC

KunzC

HarrisonSC

1995 The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature 375 291 298

10. AllisonSL

SchalichJ

StiasnyK

MandlCW

HeinzFX

2001 Mutational evidence for an internal fusion peptide in flavivirus envelope protein E. J Virol 75 4268 4275

11. ModisY

OgataS

ClementsD

HarrisonSC

2004 Structure of the dengue virus envelope protein after membrane fusion. Nature 427 313 319

12. BressanelliS

StiasnyK

AllisonSL

SturaEA

DuquerroyS

2004 Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. Embo J 23 728 738

13. ModisY

OgataS

ClementsD

HarrisonSC

2003 A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci U S A 100 6986 6991

14. KanaiR

KarK

AnthonyK

GouldLH

LedizetM

2006 Crystal structure of west nile virus envelope glycoprotein reveals viral surface epitopes. J Virol 80 11000 11008

15. HeinzFX

MandlCW

HolzmannH

KunzC

HarrisBA

1991 The flavivirus envelope protein E: isolation of a soluble form from tick-borne encephalitis virus and its crystallization. J Virol 65 5579 5583

16. MukhopadhyayS

KimBS

ChipmanPR

RossmannMG

KuhnRJ

2003 Structure of West Nile virus. Science 302 248

17. WildC

OasT

McDanalC

BolognesiD

MatthewsT

1992 A synthetic peptide inhibitor of human immunodeficiency virus replication: correlation between solution structure and viral inhibition. Proc Natl Acad Sci U S A 89 10537 10541

18. WildC

DubayJW

GreenwellT

BairdTJr

OasTG

1994 Propensity for a leucine zipper-like domain of human immunodeficiency virus type 1 gp41 to form oligomers correlates with a role in virus-induced fusion rather than assembly of the glycoprotein complex. Proc Natl Acad Sci U S A 91 12676 12680

19. KilbyJM

HopkinsS

VenettaTM

DiMassimoB

CloudGA

1998 Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nat Med 4 1302 1307

20. ChanDC

KimPS

1998 HIV entry and its inhibition. Cell 93 681 684

21. LiaoM

KielianM

2005 Domain III from class II fusion proteins functions as a dominant-negative inhibitor of virus membrane fusion. J Cell Biol 171 111 120

22. HrobowskiYM

GarryRF

MichaelSF

2005 Peptide inhibitors of dengue virus and West Nile virus infectivity. Virol J 2 49

23. StiasnyK

AllisonSL

SchalichJ

HeinzFX

2002 Membrane interactions of the tick-borne encephalitis virus fusion protein E at low pH. J Virol 76 3784 3790

24. ThompsonBS

MoeskerB

SmitJM

WilschutJ

DiamondMS

2009 A therapeutic antibody against west nile virus neutralizes infection by blocking fusion within endosomes. PLoS Pathog 5 e1000453 doi:10.1371/journal.ppat.1000453

25. CorverJ

BronR

SnippeH

KraaijeveldC

WilschutJ

1997 Membrane fusion activity of Semliki Forest virus in a liposomal model system: specific inhibition by Zn2+ ions. Virology 238 14 21

26. BronR

WahlbergJM

GaroffH

WilschutJ

1993 Membrane fusion of Semliki Forest virus in a model system: correlation between fusion kinetics and structural changes in the envelope glycoprotein. Embo J 12 693 701

27. SomerharjuP

2002 Pyrene-labeled lipids as tools in membrane biophysics and cell biology. Chem Phys Lipids 116 57 74

28. PiersonTC

XuQ

NelsonS

OliphantT

NybakkenGE

2007 The stoichiometry of antibody-mediated neutralization and enhancement of West Nile virus infection. Cell Host Microbe 1 135 145

29. PiersonTC

DiamondMS

2008 Molecular mechanisms of antibody-mediated neutralisation of flavivirus infection. Expert Rev Mol Med 10 e12

30. LokSM

KostyuchenkoV

NybakkenGE

HoldawayHA

BattistiAJ

2008 Binding of a neutralizing antibody to dengue virus alters the arrangement of surface glycoproteins. Nat Struct Mol Biol 15 312 317

31. ZhangY

ZhangW

OgataS

ClementsD

StraussJH

2004 Conformational changes of the flavivirus E glycoprotein. Structure 12 1607 1618

32. LiL

LokSM

YuIM

ZhangY

KuhnRJ

2008 The flavivirus precursor membrane-envelope protein complex: structure and maturation. Science 319 1830 1834

33. PohMK

YipA

ZhangS

PriestleJP

MaNL

2009 A small molecule fusion inhibitor of dengue virus. Antiviral Res 84 260 266

34. HenchalEA

GentryMK

McCownJM

BrandtWE

1982 Dengue virus-specific and flavivirus group determinants identified with monoclonal antibodies by indirect immunofluorescence. Am J Trop Med Hyg 31 830 836

35. BulichR

AsakovJG

1992 Nuclear localization of dengue 2 virus core protein detected with monoclonal antibodies. J Gen Virol 73 2999 3003

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#