#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Reconstitution of SARS-Coronavirus mRNA Cap Methylation


SARS-coronavirus (SARS-CoV) genome expression depends on the synthesis of a set of mRNAs, which presumably are capped at their 5′ end and direct the synthesis of all viral proteins in the infected cell. Sixteen viral non-structural proteins (nsp1 to nsp16) constitute an unusually large replicase complex, which includes two methyltransferases putatively involved in viral mRNA cap formation. The S-adenosyl-L-methionine (AdoMet)-dependent (guanine-N7)-methyltransferase (N7-MTase) activity was recently attributed to nsp14, whereas nsp16 has been predicted to be the AdoMet-dependent (nucleoside-2′O)-methyltransferase. Here, we have reconstituted complete SARS-CoV mRNA cap methylation in vitro. We show that mRNA cap methylation requires a third viral protein, nsp10, which acts as an essential trigger to complete RNA cap-1 formation. The obligate sequence of methylation events is initiated by nsp14, which first methylates capped RNA transcripts to generate cap-0 7MeGpppA-RNAs. The latter are then selectively 2′O-methylated by the 2′O-MTase nsp16 in complex with its activator nsp10 to give rise to cap-1 7MeGpppA2′OMe-RNAs. Furthermore, sensitive in vitro inhibition assays of both activities show that aurintricarboxylic acid, active in SARS-CoV infected cells, targets both MTases with IC50 values in the micromolar range, providing a validated basis for anti-coronavirus drug design.


Vyšlo v časopise: Reconstitution of SARS-Coronavirus mRNA Cap Methylation. PLoS Pathog 6(4): e32767. doi:10.1371/journal.ppat.1000863
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1000863

Souhrn

SARS-coronavirus (SARS-CoV) genome expression depends on the synthesis of a set of mRNAs, which presumably are capped at their 5′ end and direct the synthesis of all viral proteins in the infected cell. Sixteen viral non-structural proteins (nsp1 to nsp16) constitute an unusually large replicase complex, which includes two methyltransferases putatively involved in viral mRNA cap formation. The S-adenosyl-L-methionine (AdoMet)-dependent (guanine-N7)-methyltransferase (N7-MTase) activity was recently attributed to nsp14, whereas nsp16 has been predicted to be the AdoMet-dependent (nucleoside-2′O)-methyltransferase. Here, we have reconstituted complete SARS-CoV mRNA cap methylation in vitro. We show that mRNA cap methylation requires a third viral protein, nsp10, which acts as an essential trigger to complete RNA cap-1 formation. The obligate sequence of methylation events is initiated by nsp14, which first methylates capped RNA transcripts to generate cap-0 7MeGpppA-RNAs. The latter are then selectively 2′O-methylated by the 2′O-MTase nsp16 in complex with its activator nsp10 to give rise to cap-1 7MeGpppA2′OMe-RNAs. Furthermore, sensitive in vitro inhibition assays of both activities show that aurintricarboxylic acid, active in SARS-CoV infected cells, targets both MTases with IC50 values in the micromolar range, providing a validated basis for anti-coronavirus drug design.


Zdroje

1. RotaPA

ObersteMS

MonroeSS

NixWA

CampagnoliR

2003 Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300 1394 1399

2. GorbalenyaAE

EnjuanesL

ZiebuhrJ

SnijderEJ

2006 Nidovirales: evolving the largest RNA virus genome. Virus Res 117 17 37

3. SnijderEJ

BredenbeekPJ

DobbeJC

ThielV

ZiebuhrJ

2003 Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol 331 991 1004

4. ThielV

IvanovKA

PuticsA

HertzigT

SchelleB

2003 Mechanisms and enzymes involved in SARS coronavirus genome expression. J Gen Virol 84 2305 2315

5. SawickiSG

SawickiDL

SiddellSG

2007 A contemporary view of coronavirus transcription. J Virol 81 20 29

6. SnijderEJ

van der MeerY

Zevenhoven-DobbeJ

OnderwaterJJ

van der MeulenJ

2006 Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. J Virol 80 5927 5940

7. PerlmanS

NetlandJ

2009 Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol 7 439 450

8. BakerSC

YokomoriK

DongS

CarlisleR

GorbalenyaAE

1993 Identification of the catalytic sites of a papain-like cysteine proteinase of murine coronavirus. J Virol 67 6056 6063

9. LuY

LuX

DenisonMR

1995 Identification and characterization of a serine-like proteinase of the murine coronavirus MHV-A59. J Virol 69 3554 3559

10. ImbertI

GuillemotJC

BourhisJM

BussettaC

CoutardB

2006 A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus. EMBO J 25 4933 4942

11. SawickiSG

SawickiDL

YounkerD

MeyerY

ThielV

2005 Functional and genetic analysis of coronavirus replicase-transcriptase proteins. PLoS Pathog 1 e39 doi:10.1371/journal.ppat.0010039

12. te VelthuisA

ArnoldJ

CameronG

van der WormS

SnijderE

2010 The RNA polymerase activity of SARS-coronavirus nsp12 is primer dependent. Nucleic Acids Res 38 203 214

13. IvanovKA

ZiebuhrJ

2004 Human coronavirus 229E nonstructural protein 13: characterization of duplex-unwinding, nucleoside triphosphatase, and RNA 5′-triphosphatase activities. J Virol 78 7833 7838

14. SeybertA

HegyiA

SiddellSG

ZiebuhrJ

2000 The human coronavirus 229E superfamily 1 helicase has RNA and DNA duplex-unwinding activities with 5′-to-3′ polarity. Rna 6 1056 1068

15. IvanovKA

HertzigT

RozanovM

BayerS

ThielV

2004 Major genetic marker of nidoviruses encodes a replicative endoribonuclease. Proc Natl Acad Sci U S A 101 12694 12699

16. MinskaiaE

HertzigT

GorbalenyaAE

CampanacciV

CambillauC

2006 Discovery of an RNA virus 3′->5′ exoribonuclease that is critically involved in coronavirus RNA synthesis. Proc Natl Acad Sci U S A 103 5108 5113

17. ChenY

CaiH

PanJ

XiangN

TienP

2009 Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. Proc Natl Acad Sci U S A 106 3484 3489

18. DecrolyE

ImbertI

CoutardB

BouvetM

SeliskoB

2008 Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside-2′O)-methyltransferase activity. J Virol 82 8071 8084

19. von GrotthussM

WyrwiczLS

RychlewskiL

2003 mRNA cap-1 methyltransferase in the SARS genome. Cell 113 701 702

20. van HemertMJ

van den WormSH

KnoopsK

MommaasAM

GorbalenyaAE

2008 SARS-coronavirus replication/transcription complexes are membrane-protected and need a host factor for activity in vitro. PLoS Pathog 4 e1000054 doi:10.1371/journal.ppat.1000054

21. KnoopsK

KikkertM

van den WormSHE

Zevenhoven-DobbeJC

van der MeerY

2008 SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol 6 e226 doi:10.1371/journal.pbio.0060226

22. LaiMM

PattonCD

StohlmanSA

1982 Further characterization of mRNA's of mouse hepatitis virus: presence of common 5′-end nucleotides. J Virol 41 557 565

23. LaiMM

StohlmanSA

1981 Comparative analysis of RNA genomes of mouse hepatitis viruses. J Virol 38 661 670

24. van VlietAL

SmitsSL

RottierPJ

de GrootRJ

2002 Discontinuous and non-discontinuous subgenomic RNA transcription in a nidovirus. EMBO J 21 6571 6580

25. FuruichiY

LaFiandraA

ShatkinAJ

1977 5′-Terminal structure and mRNA stability. Nature 266 235 239

26. ShumanS

2001 Structure, mechanism, and evolution of the mRNA capping apparatus. Prog Nucleic Acid Res Mol Biol 66 1 40

27. GuM

LimaCD

2005 Processing the message: structural insights into capping and decapping mRNA. Curr Opin Struct Biol 15 99 106

28. LangbergSR

MossB

1981 Post-transcriptional modifications of mRNA. Purification and characterization of cap I and cap II RNA (nucleoside-2′-)-methyltransferases from HeLa cells. J Biol Chem 256 10054 10060

29. WangHL

O'RearJ

StollarV

1996 Mutagenesis of the Sindbis virus nsP1 protein: effects on methyltransferase activity and viral infectivity. Virology 217 527 531

30. AlmazanF

DediegoML

GalanC

EscorsD

AlvarezE

2006 Construction of a severe acute respiratory syndrome coronavirus infectious cDNA clone and a replicon to study coronavirus RNA synthesis. J Virol 80 10900 10906

31. ChenP

HuT

JiangM

GuoD

2009 [Synthesis in Escherichia coli cells and characterization of the active exoribonuclease of severe acute respiratory syndrome coronavirus]. Mol Biol (Mosk) 43 446 454

32. RayD

ShahA

TilgnerM

GuoY

ZhaoY

2006 West Nile virus 5′-cap structure is formed by sequential guanine N-7 and ribose 2′-O methylations by nonstructural protein 5. J Virol 80 8362 8370

33. ZhouY

RayD

ZhaoY

DongH

RenS

2007 Structure and function of flavivirus NS5 methyltransferase. J Virol 81 3891 3903

34. IvanovKA

ThielV

DobbeJC

van der MeerY

SnijderEJ

2004 Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. J Virol 78 5619 5632

35. ImbertI

SnijderEJ

DimitrovaM

GuillemotJC

LecineP

2008 The SARS-Coronavirus PLnc domain of nsp3 as a replication/transcription scaffolding protein. Virus Res 133 136 148

36. PanJ

PengX

GaoY

LiZ

LuX

2008 Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV replication. PLoS ONE 3 e3299 doi:10.1371/journal.pone.0003299

37. JosephJS

SaikatenduKS

SubramanianV

NeumanBW

BroounA

2006 Crystal structure of nonstructural protein 10 from the severe acute respiratory syndrome coronavirus reveals a novel fold with two zinc-binding motifs. J Virol 80 7894 7901

38. SuD

LouZ

SunF

ZhaiY

YangH

2006 Dodecamer structure of severe acute respiratory syndrome coronavirus nonstructural protein nsp10. J Virol 80 7902 7908

39. DonaldsonEF

SimsAC

GrahamRL

DenisonMR

BaricRS

2007 Murine hepatitis virus replicase protein nsp10 is a critical regulator of viral RNA synthesis. J Virol 81 6356 6368

40. DonaldsonEF

GrahamRL

SimsAC

DenisonMR

BaricRS

2007 Analysis of murine hepatitis virus strain A59 temperature-sensitive mutant TS-LA6 suggests that nsp10 plays a critical role in polyprotein processing. J Virol 81 7086 7098

41. HeR

AdonovA

Traykova-AdonovaM

CaoJ

CuttsT

2004 Potent and selective inhibition of SARS coronavirus replication by aurintricarboxylic acid. Biochem Biophys Res Commun 320 1199 1203

42. EgloffMP

BenarrochD

SeliskoB

RometteJL

CanardB

2002 An RNA cap (nucleoside-2′-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. Embo J 21 2757 2768

43. ColemanTM

WangG

HuangF

2004 Superior 5′ homogeneity of RNA from ATP-initiated transcription under the T7 phi 2.5 promoter. Nucleic Acids Res 32 e14

44. BujnickiJM

RychlewskiL

2002 In silico identification, structure prediction and phylogenetic analysis of the 2′-O-ribose (cap 1) methyltransferase domain in the large structural protein of ssRNA negative-strand viruses. Protein Eng 15 101 108

45. DongH

ZhangB

ShiPY

2008 Flavivirus methyltransferase: a novel antiviral target. Antiviral Res 80 1 10

46. PughCS

BorchardtRT

StoneHO

1978 Sinefungin, a potent inhibitor of virion mRNA(guanine-7-)-methyltransferase, mRNA(nucleoside-2′-)-methyltransferase, and viral multiplication. J Biol Chem 253 4075 4077

47. PughCS

BorchardtRT

1982 Effects of S-adenosylhomocysteine analogues on vaccinia viral messenger ribonucleic acid synthesis and methylation. Biochemistry 21 1535 1541

48. SeliskoB

PeyraneFF

CanardB

AlvarezK

DecrolyE

2010 Biochemical characterization of the (nucleoside-2′O)-methyltransferase activity of dengue virus protein NS5 using purified capped RNA oligonucleotides 7MeGpppACn and GpppACn. J Gen Virol 91 112 121

49. LiJ

ChorbaJS

WhelanSP

2007 Vesicular stomatitis viruses resistant to the methylase inhibitor sinefungin upregulate RNA synthesis and reveal mutations that affect mRNA cap methylation. J Virol 81 4104 4115

50. KloorD

KarnahlK

KompfJ

2004 Characterization of glycine N-methyltransferase from rabbit liver. Biochem Cell Biol 82 369 374

51. WoodcockDM

AdamsJK

AllanRG

CooperIA

1983 Effect of several inhibitors of enzymatic DNA methylation on the in vivo methylation of different classes of DNA sequences in a cultured human cell line. Nucleic Acids Res 11 489 499

52. MilaniM

MastrangeloE

BollatiM

SeliskoB

DecrolyE

2009 Flaviviral methyltransferase/RNA interaction: structural basis for enzyme inhibition. Antiviral Res 83 28 34

53. LuzhkovVB

SeliskoB

NordqvistA

PeyraneF

DecrolyE

2007 Virtual screening and bioassay study of novel inhibitors for dengue virus mRNA cap (nucleoside-2′O)-methyltransferase. Bioorg Med Chem 15 7795 7802

54. MaoX

ShumanS

1994 Intrinsic RNA (guanine-7) methyltransferase activity of the vaccinia virus capping enzyme D1 subunit is stimulated by the D12 subunit. Identification of amino acid residues in the D1 protein required for subunit association and methyl group transfer. J Biol Chem 269 24472 24479

55. SchwerB

HausmannS

SchneiderS

ShumanS

2006 Poxvirus mRNA cap methyltransferase. Bypass of the requirement for the stimulatory subunit by mutations in the catalytic subunit and evidence for intersubunit allostery. J Biol Chem 281 18953 18960

56. De la PenaM

KyrieleisOJ

CusackS

2007 Structural insights into the mechanism and evolution of the vaccinia virus mRNA cap N7 methyl-transferase. EMBO J 26 4913 4925

57. KrishnaSS

MajumdarI

GrishinNV

2003 Structural classification of zinc fingers: survey and summary. Nucleic Acids Res 31 532 550

58. PradhanM

EstevePO

ChinHG

SamaranaykeM

KimGD

2008 CXXC domain of human DNMT1 is essential for enzymatic activity. Biochemistry 47 10000 10009

59. ShikauchiY

SaiuraA

KuboT

NiwaY

YamamotoJ

2009 SALL3 interacts with DNMT3A and shows the ability to inhibit CpG island methylation in hepatocellular carcinoma. Mol Cell Biol 29 1944 1958

60. ReinischKM

NibertML

HarrisonSC

2000 Structure of the reovirus core at 3.6 A resolution. Nature 404 960 967

61. LiJ

WangJT

WhelanSP

2006 A unique strategy for mRNA cap methylation used by vesicular stomatitis virus. Proc Natl Acad Sci U S A 103 8493 8498

62. EgloffMP

DecrolyE

MaletH

SeliskoB

BenarrochD

2007 Structural and functional analysis of methylation and 5′-RNA sequence requirements of short capped RNAs by the methyltransferase domain of dengue virus NS5. J Mol Biol 372 723 736

63. BollatiM

AlvarezK

AssenbergR

BarontiC

CanardB

2009 Structure and functionality in flavivirus NS-proteins: Perspectives for drug design. Antiviral Res

64. DongH

RayD

RenS

ZhangB

Puig-BasagoitiF

2007 Distinct RNA elements confer specificity to flavivirus RNA cap methylation events. J Virol 81 4412 4421

65. SchnierleBS

GershonPD

MossB

1994 Mutational analysis of a multifunctional protein, with mRNA 5′ cap-specific (nucleoside-2′-O-)-methyltransferase and 3′-adenylyltransferase stimulatory activities, encoded by vaccinia virus. J Biol Chem 269 20700 20706

66. SchnierleBS

GershonPD

MossB

1992 Cap-specific mRNA (nucleoside-O2′-)-methyltransferase and poly(A) polymerase stimulatory activities of vaccinia virus are mediated by a single protein. Proc Natl Acad Sci U S A 89 2897 2901

67. LuongoCL

ContrerasCM

FarsettaDL

NibertML

1998 Binding site for S-adenosyl-L-methionine in a central region of mammalian reovirus lambda2 protein. Evidence for activities in mRNA cap methylation. J Biol Chem 273 23773 23780

68. RamadeviN

BurroughsNJ

MertensPP

JonesIM

RoyP

1998 Capping and methylation of mRNA by purified recombinant VP4 protein of bluetongue virus. Proc Natl Acad Sci U S A 95 13537 13542

69. PeyraneF

SeliskoB

DecrolyE

VasseurJJ

BenarrochD

2007 High-yield production of short GpppA- and 7MeGpppA-capped RNAs and HPLC-monitoring of methyltransfer reactions at the guanine-N7 and adenosine-2'O positions. Nucleic Acids Res 35 e26

70. OsborneTC

ObianyoO

ZhangX

ChengX

ThompsonPR

2007 Protein arginine methyltransferase 1: positively charged residues in substrate peptides distal to the site of methylation are important for substrate binding and catalysis. Biochemistry 46 13370 13381

71. ChrebetGL

WisniewskiD

PerkinsAL

DengQ

KurtzMB

2005 Cell-based assays to detect inhibitors of fungal mRNA capping enzymes and characterization of sinefungin as a cap methyltransferase inhibitor. J Biomol Screen 10 355 364

72. CampanacciV

EgloffMP

LonghiS

FerronF

RancurelC

2003 Structural genomics of the SARS coronavirus: cloning, expression, crystallization and preliminary crystallographic study of the Nsp9 protein. Acta Crystallogr D Biol Crystallogr 59 1628 1631

73. DeLeanA

MunsonPJ

RodbardD

1978 Simultaneous analysis of families of sigmoidal curves: application to bioassay, radioligand assay, and physiological dose-response curves. Am J Physiol 235 E97 102

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#