#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Parp3 Negatively Regulates Immunoglobulin Class Switch Recombination


During infections, B cells diversify the antibodies they produce by two mechanisms: somatic hypermutation (SHM) and class switch recombination (CSR). SHM mutates the regions encoding the antigen-binding site, generating high-affinity antibodies. CSR allows B cells to switch the class of antibody they produce (from IgM to IgA, IgG or IgE), providing novel effector functions. Together, SHM and CSR establish highly specific and pathogen-adapted antibody responses. SHM and CSR are initiated by the recruitment of the activation-induced cytidine deaminase (AID) enzyme to antibody genes. Once recruited, AID induces DNA lesions that are processed into mutations during SHM or chromosomal DNA breaks during CSR. These breaks activate multiple DNA repair proteins and are resolved by replacing the IgM gene segments by those encoding IgA, IgG or IgE. AID carries a significant oncogenic potential that needs to be controlled to preserve genome integrity. Nevertheless, the underlying mechanisms remain poorly understood. Here we show that Poly(ADP)ribose polymerase 3 (Parp3), an enzyme recently implicated in DNA repair, contributes to antibody diversification by negatively regulating CSR without affecting SHM. We show that Parp3 facilitates the repair of AID-induced DNA damage and controls AID levels on chromatin. We propose that Parp3 protects antibody genes from sustained AID-dependent DNA damage.


Vyšlo v časopise: Parp3 Negatively Regulates Immunoglobulin Class Switch Recombination. PLoS Genet 11(5): e32767. doi:10.1371/journal.pgen.1005240
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005240

Souhrn

During infections, B cells diversify the antibodies they produce by two mechanisms: somatic hypermutation (SHM) and class switch recombination (CSR). SHM mutates the regions encoding the antigen-binding site, generating high-affinity antibodies. CSR allows B cells to switch the class of antibody they produce (from IgM to IgA, IgG or IgE), providing novel effector functions. Together, SHM and CSR establish highly specific and pathogen-adapted antibody responses. SHM and CSR are initiated by the recruitment of the activation-induced cytidine deaminase (AID) enzyme to antibody genes. Once recruited, AID induces DNA lesions that are processed into mutations during SHM or chromosomal DNA breaks during CSR. These breaks activate multiple DNA repair proteins and are resolved by replacing the IgM gene segments by those encoding IgA, IgG or IgE. AID carries a significant oncogenic potential that needs to be controlled to preserve genome integrity. Nevertheless, the underlying mechanisms remain poorly understood. Here we show that Poly(ADP)ribose polymerase 3 (Parp3), an enzyme recently implicated in DNA repair, contributes to antibody diversification by negatively regulating CSR without affecting SHM. We show that Parp3 facilitates the repair of AID-induced DNA damage and controls AID levels on chromatin. We propose that Parp3 protects antibody genes from sustained AID-dependent DNA damage.


Zdroje

1. Di Noia JM, Neuberger MS. Molecular mechanisms of antibody somatic hypermutation. Annu Rev Biochem. 2007;76:1–22. Epub 2007/03/03. doi: 10.1146/annurev.biochem.76.061705.090740 17328676.

2. Chaudhuri J, Basu U, Zarrin A, Yan C, Franco S, Perlot T, et al. Evolution of the immunoglobulin heavy chain class switch recombination mechanism. Adv Immunol. 2007;94:157–214. 17560275.

3. Pavri R, Nussenzweig MC. AID targeting in antibody diversity. Advances in immunology. 2011;110:1–26. Epub 2011/07/19. doi: 10.1016/B978-0-12-387663-8.00005–3 21762814.

4. Robert I, Dantzer F, Reina-San-Martin B. Parp1 facilitates alternative NHEJ, whereas Parp2 suppresses IgH/c-myc translocations during immunoglobulin class switch recombination. J Exp Med. 2009;206(5):1047–56. Epub 2009/04/15. doi: 10.1084/jem.20082468 19364882; PubMed Central PMCID: PMC2715026.

5. Rulten SL, Fisher AE, Robert I, Zuma MC, Rouleau M, Ju L, et al. PARP-3 and APLF function together to accelerate nonhomologous end-joining. Mol Cell. 2011;41(1):33–45. Epub 2011/01/08. doi: 10.1016/j.molcel.2010.12.006 21211721.

6. Boboila C, Alt FW, Schwer B. Classical and alternative end-joining pathways for repair of lymphocyte-specific and general DNA double-strand breaks. Advances in immunology. 2012;116:1–49. Epub 2012/10/16. doi: 10.1016/B978-0-12-394300-2.00001–6 23063072.

7. Stavnezer J, Bjorkman A, Du L, Cagigi A, Pan-Hammarstrom Q. Mapping of switch recombination junctions, a tool for studying DNA repair pathways during immunoglobulin class switching. Advances in immunology. 2010;108:45–109. Epub 2010/11/09. doi: 10.1016/B978-0-12-380995-7.00003–3 21056729.

8. Robert I, Karicheva O, Reina San Martin B, Schreiber V, Dantzer F. Functional aspects of PARylation in induced and programmed DNA repair processes: Preserving genome integrity and modulating physiological events. Mol Aspects Med. 2013. Epub 2013/03/05. doi: 10.1016/j.mam.2013.02.001 23454615.

9. Gibson BA, Kraus WL. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nature reviews Molecular cell biology. 2012;13(7):411–24. Epub 2012/06/21. doi: 10.1038/nrm3376 22713970.

10. Beck C, Robert I, Reina-San-Martin B, Schreiber V, Dantzer F. Poly(ADP-ribose) polymerases in double-strand break repair: focus on PARP1, PARP2 and PARP3. Exp Cell Res. 2014;329(1):18–25. Epub 2014/07/16. doi: 10.1016/j.yexcr.2014.07.003 25017100.

11. Jacobs H, Fukita Y, van der Horst GT, de Boer J, Weeda G, Essers J, et al. Hypermutation of immunoglobulin genes in memory B cells of DNA repair-deficient mice. J Exp Med. 1998;187(11):1735–43. Epub 1998/06/10. 9607915; PubMed Central PMCID: PMC2212309.

12. Boehler C, Gauthier LR, Mortusewicz O, Biard DS, Saliou JM, Bresson A, et al. Poly(ADP-ribose) polymerase 3 (PARP3), a newcomer in cellular response to DNA damage and mitotic progression. Proc Natl Acad Sci U S A. 2011;108(7):2783–8. Epub 2011/01/29. doi: 10.1073/pnas.1016574108 21270334; PubMed Central PMCID: PMC3041075.

13. Rouleau M, McDonald D, Gagne P, Ouellet ME, Droit A, Hunter JM, et al. PARP-3 associates with polycomb group bodies and with components of the DNA damage repair machinery. J Cell Biochem. 2007;100(2):385–401. Epub 2006/08/23. doi: 10.1002/jcb.21051 16924674.

14. Fenton AL, Shirodkar P, Macrae CJ, Meng L, Koch CA. The PARP3- and ATM-dependent phosphorylation of APLF facilitates DNA double-strand break repair. Nucleic acids research. 2013;41(7):4080–92. Epub 2013/03/02. doi: 10.1093/nar/gkt134 23449221; PubMed Central PMCID: PMC3627606.

15. Beck C, Boehler C, Guirouilh Barbat J, Bonnet ME, Illuzzi G, Ronde P, et al. PARP3 affects the relative contribution of homologous recombination and nonhomologous end-joining pathways. Nucleic acids research. 2014;42(9):5616–32. Epub 2014/03/07. doi: 10.1093/nar/gku174 24598253; PubMed Central PMCID: PMC4027158.

16. Pavri R, Gazumyan A, Jankovic M, Di Virgilio M, Klein I, Ansarah-Sobrinho C, et al. Activation-Induced Cytidine Deaminase Targets DNA at Sites of RNA Polymerase II Stalling by Interaction with Spt5. Cell. 2010;143(1):122–33. Epub 2010/10/05. doi: S0092-8674(10)01065-2 [pii] doi: 10.1016/j.cell.2010.09.017 20887897.

17. Wada T, Takagi T, Yamaguchi Y, Ferdous A, Imai T, Hirose S, et al. DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev. 1998;12(3):343–56. Epub 1998/02/28. 9450929; PubMed Central PMCID: PMC316480.

18. Yamaguchi Y, Takagi T, Wada T, Yano K, Furuya A, Sugimoto S, et al. NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell. 1999;97(1):41–51. Epub 1999/04/13. 10199401.

19. Rahl PB, Lin CY, Seila AC, Flynn RA, McCuine S, Burge CB, et al. c-Myc regulates transcriptional pause release. Cell. 2010;141(3):432–45. Epub 2010/05/04. doi: 10.1016/j.cell.2010.03.030 20434984; PubMed Central PMCID: PMC2864022.

20. Zeitlinger J, Stark A, Kellis M, Hong JW, Nechaev S, Adelman K, et al. RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo. Nat Genet. 2007;39(12):1512–6. Epub 2007/11/13. doi: 10.1038/ng.2007.26 17994019; PubMed Central PMCID: PMC2824921.

21. Sernandez IV, de Yebenes VG, Dorsett Y, Ramiro AR. Haploinsufficiency of activation-induced deaminase for antibody diversification and chromosome translocations both in vitro and in vivo. PLoS One. 2008;3(12):e3927. Epub 2008/12/17. doi: 10.1371/journal.pone.0003927 19079594; PubMed Central PMCID: PMC2592691.

22. Robbiani DF, Bunting S, Feldhahn N, Bothmer A, Camps J, Deroubaix S, et al. AID produces DNA double-strand breaks in non-Ig genes and mature B cell lymphomas with reciprocal chromosome translocations. Mol Cell. 2009;36(4):631–41. Epub 2009/11/28. doi: 10.1016/j.molcel.2009.11.007 19941823; PubMed Central PMCID: PMC2805907.

23. Orthwein A, Di Noia JM. Activation induced deaminase: how much and where? Semin Immunol. 2012;24(4):246–54. Epub 2012/06/13. doi: 10.1016/j.smim.2012.05.001 22687198.

24. Uchimura Y, Barton LF, Rada C, Neuberger MS. REG-gamma associates with and modulates the abundance of nuclear activation-induced deaminase. J Exp Med. 2011;208(12):2385–91. Epub 2011/11/02. doi: 10.1084/jem.20110856 22042974; PubMed Central PMCID: PMC3256965.

25. McBride KM, Barreto V, Ramiro AR, Stavropoulos P, Nussenzweig MC. Somatic hypermutation is limited by CRM1-dependent nuclear export of activation-induced deaminase. J Exp Med. 2004;199(9):1235–44. Epub 2004/05/01. doi: 10.1084/jem.20040373 15117971; PubMed Central PMCID: PMC2211910.

26. Reina-San-Martin B, Chen J, Nussenzweig A, Nussenzweig MC. Enhanced intra-switch region recombination during immunoglobulin class switch recombination in 53BP1-/- B cells. Eur J Immunol. 2007;37(1):235–9. 17183606.

27. Boboila C, Jankovic M, Yan CT, Wang JH, Wesemann DR, Zhang T, et al. Alternative end-joining catalyzes robust IgH locus deletions and translocations in the combined absence of ligase 4 and Ku70. Proc Natl Acad Sci U S A. 2010;107(7):3034–9. Epub 2010/02/06. doi: 10.1073/pnas.0915067107 20133803; PubMed Central PMCID: PMC2840344.

28. Han L, Yu K. Altered kinetics of nonhomologous end joining and class switch recombination in ligase IV-deficient B cells. J Exp Med. 2008;205(12):2745–53. Epub 2008/11/13. doi: 10.1084/jem.20081623 19001141; PubMed Central PMCID: PMC2585838.

29. Wang H, Zeng ZC, Perrault AR, Cheng X, Qin W, Iliakis G. Genetic evidence for the involvement of DNA ligase IV in the DNA-PK-dependent pathway of non-homologous end joining in mammalian cells. Nucleic acids research. 2001;29(8):1653–60. Epub 2001/04/09. 11292837; PubMed Central PMCID: PMC31316.

30. Yan CT, Boboila C, Souza EK, Franco S, Hickernell TR, Murphy M, et al. IgH class switching and translocations use a robust non-classical end-joining pathway. Nature. 2007;449(7161):478–82. Epub 2007/08/24. doi: 10.1038/nature06020 17713479.

31. Shockett P, Stavnezer J. Inhibitors of poly(ADP-ribose) polymerase increase antibody class switching. J Immunol. 1993;151(12):6962–76. Epub 1993/12/15. 8258703.

32. Teng G, Hakimpour P, Landgraf P, Rice A, Tuschl T, Casellas R, et al. MicroRNA-155 is a negative regulator of activation-induced cytidine deaminase. Immunity. 2008;28(5):621–9. Epub 2008/05/03. doi: 10.1016/j.immuni.2008.03.015 18450484; PubMed Central PMCID: PMC2430982.

33. de Yebenes VG, Belver L, Pisano DG, Gonzalez S, Villasante A, Croce C, et al. miR-181b negatively regulates activation-induced cytidine deaminase in B cells. J Exp Med. 2008;205(10):2199–206. Epub 2008/09/03. doi: 10.1084/jem.20080579 18762567; PubMed Central PMCID: PMC2556787.

34. Dorsett Y, McBride KM, Jankovic M, Gazumyan A, Thai TH, Robbiani DF, et al. MicroRNA-155 suppresses activation-induced cytidine deaminase-mediated Myc-Igh translocation. Immunity. 2008;28(5):630–8. Epub 2008/05/06. doi: 10.1016/j.immuni.2008.04.002 18455451; PubMed Central PMCID: PMC2713656.

35. Ramiro AR, Jankovic M, Callen E, Difilippantonio S, Chen HT, McBride KM, et al. Role of genomic instability and p53 in AID-induced c-myc-Igh translocations. Nature. 2006;440(7080):105–9. Epub 2006/01/10. doi: 10.1038/nature04495 16400328.

36. Smith S, de Lange T. Tankyrase promotes telomere elongation in human cells. Curr Biol. 2000;10(20):1299–302. Epub 2000/11/09. 11069113.

37. Poirier GG, de Murcia G, Jongstra-Bilen J, Niedergang C, Mandel P. Poly(ADP-ribosyl)ation of polynucleosomes causes relaxation of chromatin structure. Proc Natl Acad Sci U S A. 1982;79(11):3423–7. Epub 1982/06/01. 6808510; PubMed Central PMCID: PMC346432.

38. Pasqualucci L, Kitaura Y, Gu H, Dalla-Favera R. PKA-mediated phosphorylation regulates the function of activation-induced deaminase (AID) in B cells. Proc Natl Acad Sci U S A. 2006;103(2):395–400. Epub 2006/01/03. doi: 10.1073/pnas.0509969103 16387847; PubMed Central PMCID: PMC1326186.

39. McBride KM, Gazumyan A, Woo EM, Barreto VM, Robbiani DF, Chait BT, et al. Regulation of hypermutation by activation-induced cytidine deaminase phosphorylation. Proc Natl Acad Sci U S A. 2006;103(23):8798–803. Epub 2006/05/26. doi: 10.1073/pnas.0603272103 16723391; PubMed Central PMCID: PMC1482658.

40. McBride KM, Gazumyan A, Woo EM, Schwickert TA, Chait BT, Nussenzweig MC. Regulation of class switch recombination and somatic mutation by AID phosphorylation. J Exp Med. 2008;205(11):2585–94. Epub 2008/10/08. doi: 10.1084/jem.20081319 18838546; PubMed Central PMCID: PMC2571933.

41. Basu U, Chaudhuri J, Alpert C, Dutt S, Ranganath S, Li G, et al. The AID antibody diversification enzyme is regulated by protein kinase A phosphorylation. Nature. 2005;438(7067):508–11. Epub 2005/10/28. doi: 10.1038/nature04255 16251902.

42. Singh SK, Maeda K, Eid MM, Almofty SA, Ono M, Pham P, et al. GANP regulates recruitment of AID to immunoglobulin variable regions by modulating transcription and nucleosome occupancy. Nature communications. 2013;4:1830. Epub 2013/05/09. doi: 10.1038/ncomms2823 23652018; PubMed Central PMCID: PMC3674236.

43. Gazumyan A, Timachova K, Yuen G, Siden E, Di Virgilio M, Woo EM, et al. Amino-terminal phosphorylation of activation-induced cytidine deaminase suppresses c-myc/IgH translocation. Mol Cell Biol. 2011;31(3):442–9. Epub 2010/12/08. doi: 10.1128/MCB.00349-10 21135131; PubMed Central PMCID: PMC3028632.

44. Wu X, Stavnezer J. DNA polymerase beta is able to repair breaks in switch regions and plays an inhibitory role during immunoglobulin class switch recombination. J Exp Med. 2007;204(7):1677–89. Epub 2007/06/27. doi: 10.1084/jem.20070756 17591858; PubMed Central PMCID: PMC2118644.

45. Schrader CE, Linehan EK, Ucher AJ, Bertocci B, Stavnezer J. DNA polymerases beta and lambda do not directly affect Ig variable region somatic hypermutation although their absence reduces the frequency of mutations. DNA Repair (Amst). 2013;12(12):1087–93. Epub 2013/10/03. doi: 10.1016/j.dnarep.2013.09.002 24084171.

46. Langelier MF, Riccio AA, Pascal JM. PARP-2 and PARP-3 are selectively activated by 5' phosphorylated DNA breaks through an allosteric regulatory mechanism shared with PARP-1. Nucleic acids research. 2014;42(12):7762–75. Epub 2014/06/15. doi: 10.1093/nar/gku474 24928857; PubMed Central PMCID: PMC4081085.

47. Storck S, Aoufouchi S, Weill JC, Reynaud CA. AID and partners: for better and (not) for worse. Curr Opin Immunol. 2011;23(3):337–44. Epub 2011/03/29. doi: 10.1016/j.coi.2011.02.002 21439803.

48. Jeevan-Raj BP, Robert I, Heyer V, Page A, Wang JH, Cammas F, et al. Epigenetic tethering of AID to the donor switch region during immunoglobulin class switch recombination. J Exp Med. 2011;208(8):1649–60. Epub 2011/07/13. doi: 10.1084/jem.20110118 21746811; PubMed Central PMCID: PMC3149220.

49. Willmann KL, Milosevic S, Pauklin S, Schmitz KM, Rangam G, Simon MT, et al. A role for the RNA pol II-associated PAF complex in AID-induced immune diversification. J Exp Med. 2012;209(11):2099–111. Epub 2012/09/26. doi: 10.1084/jem.20112145 23008333; PubMed Central PMCID: PMC3478926.

50. Boboila C, Oksenych V, Gostissa M, Wang JH, Zha S, Zhang Y, et al. Robust chromosomal DNA repair via alternative end-joining in the absence of X-ray repair cross-complementing protein 1 (XRCC1). Proc Natl Acad Sci U S A. 2012;109(7):2473–8. Epub 2012/02/07. doi: 10.1073/pnas.1121470109 22308491; PubMed Central PMCID: PMC3289296.

51. Cortizas EM, Zahn A, Hajjar ME, Patenaude AM, Di Noia JM, Verdun RE. Alternative end-joining and classical nonhomologous end-joining pathways repair different types of double-strand breaks during class-switch recombination. J Immunol. 2013;191(11):5751–63. Epub 2013/10/23. doi: 10.4049/jimmunol.1301300 24146042.

52. Robbiani DF, Bothmer A, Callen E, Reina-San-Martin B, Dorsett Y, Difilipantonio S, et al. AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell. 2008;135(6):1028–38. 19070574. doi: 10.1016/j.cell.2008.09.062

53. Barreto V, Reina-San-Martin B, Ramiro AR, McBride KM, Nussenzweig MC. C-terminal deletion of AID uncouples class switch recombination from somatic hypermutation and gene conversion. Mol Cell. 2003;12(2):501–8. 14536088.

54. Jolly CJ, Klix N, Neuberger MS. Rapid methods for the analysis of immunoglobulin gene hypermutation: application to transgenic and gene targeted mice. Nucleic acids research. 1997;25(10):1913–9. Epub 1997/05/15. 9115357; PubMed Central PMCID: PMC146691.

55. Maccarthy T, Roa S, Scharff MD, Bergman A. SHMTool: a webserver for comparative analysis of somatic hypermutation datasets. DNA Repair (Amst). 2009;8(1):137–41. Epub 2008/10/28. doi: 10.1016/j.dnarep.2008.09.006 18952008; PubMed Central PMCID: PMC2659805.

56. Ehrenstein MR, Rada C, Jones AM, Milstein C, Neuberger MS. Switch junction sequences in PMS2-deficient mice reveal a microhomology-mediated mechanism of Ig class switch recombination. Proc Natl Acad Sci U S A. 2001;98(25):14553–8. Epub 2001/11/22. doi: 10.1073/pnas.241525998 11717399; PubMed Central PMCID: PMC64720.

57. Reina-San-Martin B, Difilippantonio S, Hanitsch L, Masilamani RF, Nussenzweig A, Nussenzweig MC. H2AX is required for recombination between immunoglobulin switch regions but not for intra-switch region recombination or somatic hypermutation. J Exp Med. 2003;197(12):1767–78. Epub 2003/06/18. doi: 10.1084/jem.20030569 12810694; PubMed Central PMCID: PMC2193951.

58. Schrader CE, Vardo J, Stavnezer J. Role for mismatch repair proteins Msh2, Mlh1, and Pms2 in immunoglobulin class switching shown by sequence analysis of recombination junctions. J Exp Med. 2002;195(3):367–73. Epub 2002/02/06. 11828012; PubMed Central PMCID: PMC2193596.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#