#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Drosophila Spaghetti and Doubletime Link the Circadian Clock and Light to Caspases, Apoptosis and Tauopathy


Alzheimer’s disease is the most common cause of dementia in the aging population. It is a progressive neurodegenerative disorder that attacks the brain neurons, resulting in loss of memory, thinking and behavioral changes. One pathological hallmark is aggregation of the microtubule-associated protein Tau. A growing body of evidence highlights the importance of caspase-dependent Tau truncation in initiation and potentiation of Tau aggregation. Here we use the fruit fly Drosophila to examine the links between circadian rhythms, aging, apoptosis and Alzheimer’s Disease. We identified a regulator (spag) of the circadian kinase Dbt that functions to stabilize Dbt during the middle of the day. In addition, the caspase Dronc is regulated by Dbt and Spag and, when activated by reduction of either, targets Tau for cleavage, leading to behavioral deficits and shortened lifespans. The expression of activated caspase occurs in several parts of the brain in a manner requiring signaling from a neuropeptide produced by circadian cells. Wild type flies with no genetic modifications eventually exhibit modified Dbt and expression of activated caspase at specific times of day, further demonstrating the links between the circadian clock, light and apoptosis.


Vyšlo v časopise: Drosophila Spaghetti and Doubletime Link the Circadian Clock and Light to Caspases, Apoptosis and Tauopathy. PLoS Genet 11(5): e32767. doi:10.1371/journal.pgen.1005171
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005171

Souhrn

Alzheimer’s disease is the most common cause of dementia in the aging population. It is a progressive neurodegenerative disorder that attacks the brain neurons, resulting in loss of memory, thinking and behavioral changes. One pathological hallmark is aggregation of the microtubule-associated protein Tau. A growing body of evidence highlights the importance of caspase-dependent Tau truncation in initiation and potentiation of Tau aggregation. Here we use the fruit fly Drosophila to examine the links between circadian rhythms, aging, apoptosis and Alzheimer’s Disease. We identified a regulator (spag) of the circadian kinase Dbt that functions to stabilize Dbt during the middle of the day. In addition, the caspase Dronc is regulated by Dbt and Spag and, when activated by reduction of either, targets Tau for cleavage, leading to behavioral deficits and shortened lifespans. The expression of activated caspase occurs in several parts of the brain in a manner requiring signaling from a neuropeptide produced by circadian cells. Wild type flies with no genetic modifications eventually exhibit modified Dbt and expression of activated caspase at specific times of day, further demonstrating the links between the circadian clock, light and apoptosis.


Zdroje

1. Kim TW, Pettingell WH, Jung YK, Kovacs DM, Tanzi RE (1997) Alternative cleavage of Alzheimer-associated presenilins during apoptosis by a caspase-3 family protease. Science 277: 373–376. 9219695

2. Gervais FG, Xu D, Robertson GS, Vaillancourt JP, Zhu Y, et al. (1999) Involvement of caspases in proteolytic cleavage of Alzheimer's amyloid-beta precursor protein and amyloidogenic A beta peptide formation. Cell 97: 395–406. 10319819

3. de Calignon A, Fox LM, Pitstick R, Carlson GA, Bacskai BJ, et al. (2010) Caspase activation precedes and leads to tangles. Nature 464: 1201–1204. doi: 10.1038/nature08890 20357768

4. Sanchez Mejia RO, Friedlander RM (2001) Caspases in Huntington's disease. Neuroscientist 7: 480–489. 11765125

5. Khurana V, Elson-Schwab I, Fulga TA, Sharp KA, Loewen CA, et al. (2010) Lysosomal dysfunction promotes cleavage and neurotoxicity of tau in vivo. PLoS Genet 6: e1001026. doi: 10.1371/journal.pgen.1001026 20664788

6. Marx J (2001) Neuroscience. New leads on the 'how' of Alzheimer's. Science 293: 2192–2194. 11567120

7. McLaughlin B, Hartnett KA, Erhardt JA, Legos JJ, White RF, et al. (2003) Caspase 3 activation is essential for neuroprotection in preconditioning. Proc Natl Acad Sci U S A 100: 715–720. 12522260

8. Rohn TT, Rissman RA, Davis MC, Kim YE, Cotman CW, et al. (2002) Caspase-9 activation and caspase cleavage of tau in the Alzheimer's disease brain. Neurobiol Dis 11: 341–354. 12505426

9. Gamblin TC, Chen F, Zambrano A, Abraha A, Lagalwar S, et al. (2003) Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer's disease. Proc Natl Acad Sci U S A 100: 10032–10037. 12888622

10. Iijima-Ando K, Iijima K (2010) Transgenic Drosophila models of Alzheimer's disease and tauopathies. Brain Struct Funct 214: 245–262. doi: 10.1007/s00429-009-0234-4 19967412

11. Heidary G, Fortini ME (2001) Identification and characterization of the Drosophila tau homolog. Mech Dev 108: 171–178. 11578871

12. Chen X, Li Y, Huang J, Cao D, Yang G, et al. (2007) Study of tauopathies by comparing Drosophila and human tau in Drosophila. Cell Tissue Res 329: 169–178. 17406902

13. Chee FC, Mudher A, Cuttle MF, Newman TA, MacKay D, et al. (2005) Over-expression of tau results in defective synaptic transmission in Drosophila neuromuscular junctions. Neurobiol Dis 20: 918–928. 16023860

14. Mudher A, Shepherd D, Newman TA, Mildren P, Jukes JP, et al. (2004) GSK-3beta inhibition reverses axonal transport defects and behavioural phenotypes in Drosophila. Mol Psychiatry 9: 522–530. 14993907

15. Mershin A, Pavlopoulos E, Fitch O, Braden BC, Nanopoulos DV, et al. (2004) Learning and memory deficits upon TAU accumulation in Drosophila mushroom body neurons. Learn Mem 11: 277–287. 15169857

16. Wittmann CW, Wszolek MF, Shulman JM, Salvaterra PM, Lewis J, et al. (2001) Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science 293: 711–714. 11408621

17. Jackson GR, Wiedau-Pazos M, Sang TK, Wagle N, Brown CA, et al. (2002) Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila. Neuron 34: 509–519. 12062036

18. Hardin PE (2011) Molecular genetic analysis of circadian timekeeping in Drosophila. Adv Genet 74: 141–173. doi: 10.1016/B978-0-12-387690-4.00005-2 21924977

19. Price JL, Blau J, Rothenfluh A, Abodeely M, Kloss B, et al. (1998) double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 94: 83–95. 9674430

20. Kloss B, Price JL, Saez L, Blau J, Rothenfluh A, et al. (1998) The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iepsilon. Cell 94: 97–107. 9674431

21. Guan J, Li H, Rogulja A, Axelrod JD, Cadigan KM (2007) The Drosophila casein kinase Iepsilon/delta Discs overgrown promotes cell survival via activation of DIAP1 expression. Dev Biol 303: 16–28. 17134692

22. Weldemichael DA, Grossberg GT (2010) Circadian rhythm disturbances in patients with Alzheimer's disease: a review. Int J Alzheimers Dis 2010.

23. Cermakian N, Lamont EW, Boudreau P, Boivin DB (2011) Circadian clock gene expression in brain regions of Alzheimer 's disease patients and control subjects. J Biol Rhythms 26: 160–170. doi: 10.1177/0748730410395732 21454296

24. Sterniczuk R, Dyck RH, Laferla FM, Antle MC (2010) Characterization of the 3xTg-AD mouse model of Alzheimer's disease: part 1. Circadian changes. Brain Res 1348: 139–148. doi: 10.1016/j.brainres.2010.05.013 20471965

25. Zhang S, Binari R, Zhou R, Perrimon N (2010) A genomewide RNA interference screen for modifiers of aggregates formation by mutant Huntingtin in Drosophila. Genetics 184: 1165–1179. doi: 10.1534/genetics.109.112516 20100940

26. Yoo SJ, Huh JR, Muro I, Yu H, Wang L, et al. (2002) Hid, Rpr and Grim negatively regulate DIAP1 levels through distinct mechanisms. Nat Cell Biol 4: 416–424. 12021767

27. Muskus MJ, Preuss F, Fan JY, Bjes ES, Price JL (2007) Drosophila DBT lacking protein kinase activity produces long-period and arrhythmic circadian behavioral and molecular rhythms. Mol Cell Biol 27: 8049–8064. 17893330

28. Fan JY, Preuss F, Muskus MJ, Bjes ES, Price JL (2009) Drosophila and vertebrate casein kinase Idelta exhibits evolutionary conservation of circadian function. Genetics 181: 139–152. doi: 10.1534/genetics.108.094805 18957703

29. Fan JY, Agyekum B, Venkatesan A, Hall DR, Keightley A, et al. (2013) Noncanonical FK506-binding protein BDBT binds DBT to enhance its circadian function and forms foci at night. Neuron 80: 984–996. doi: 10.1016/j.neuron.2013.08.004 24210908

30. Im SH, Taghert PH (2010) PDF receptor expression reveals direct interactions between circadian oscillators in Drosophila. J Comp Neurol 518: 1925–1945. doi: 10.1002/cne.22311 20394051

31. Muro I, Means JC, Clem RJ (2005) Cleavage of the apoptosis inhibitor DIAP1 by the apical caspase DRONC in both normal and apoptotic Drosophila cells. J Biol Chem 280: 18683–18688. 15774476

32. Boulon S, Marmier-Gourrier N, Pradet-Balade B, Wurth L, Verheggen C, et al. (2008) The Hsp90 chaperone controls the biogenesis of L7Ae RNPs through conserved machinery. J Cell Biol 180: 579–595. doi: 10.1083/jcb.200708110 18268104

33. Eckert K, Saliou JM, Monlezun L, Vigouroux A, Atmane N, et al. (2010) The Pih1-Tah1 cochaperone complex inhibits Hsp90 molecular chaperone ATPase activity. J Biol Chem 285: 31304–31312. doi: 10.1074/jbc.M110.138263 20663878

34. Benbahouche NE, Iliopoulos I, Torok I, Marhold J, Henri J, et al. (2014) Drosophila Spag is the homolog of RNA Polymerase II Associated Protein 3 (RPAP3), and recruits the Heat Shock Proteins 70 and 90 (Hsp70 and Hsp90) during the assembly of cellular machineries. J Biol Chem 289:6236–6247. doi: 10.1074/jbc.M113.499608 24394412

35. Itsuki Y, Saeki M, Nakahara H, Egusa H, Irie Y, et al. (2008) Molecular cloning of novel Monad binding protein containing tetratricopeptide repeat domains. FEBS Lett 582: 2365–2370. doi: 10.1016/j.febslet.2008.05.041 18538670

36. Yoshida M, Saeki M, Egusa H, Irie Y, Kamano Y, et al. (2013) RPAP3 splicing variant isoform 1 interacts with PIH1D1 to compose R2TP complex for cell survival. Biochem Biophys Res Commun 430: 320–324. doi: 10.1016/j.bbrc.2012.11.017 23159623

37. Umezaki Y, Yoshii T, Kawaguchi T, Helfrich-Forster C, Tomioka K (2012) Pigment-dispersing factor is involved in age-dependent rhythm changes in Drosophila melanogaster. J Biol Rhythms 27: 423–432. doi: 10.1177/0748730412462206 23223368

38. Rakshit K, Krishnan N, Guzik EM, Pyza E, Giebultowicz JM (2012) Effects of aging on the molecular circadian oscillations in Drosophila. Chronobiol Int 29: 5–14. doi: 10.3109/07420528.2011.635237 22217096

39. Luo W, Chen WF, Yue Z, Chen D, Sowcik M, et al. (2012) Old flies have a robust central oscillator but weaker behavioral rhythms that can be improved by genetic and environmental manipulations. Aging Cell 11: 428–438. doi: 10.1111/j.1474-9726.2012.00800.x 22268765

40. Krishnan N, Rakshit K, Chow ES, Wentzell JS, Kretzschmar D, et al. (2012) Loss of circadian clock accelerates aging in neurodegeneration-prone mutants. Neurobiol Dis 45: 1129–1135. doi: 10.1016/j.nbd.2011.12.034 22227001

41. Arya R, Mallik M, Lakhotia SC (2007) Heat shock genes—integrating cell survival and death. J Biosci 32: 595–610. 17536179

42. Tamaru T, Hattori M, Ninomiya Y, Kawamura G, Vares G, et al. (2013) ROS Stress Resets Circadian Clocks to Coordinate Pro-Survival Signals. PLoS One 8: e82006. doi: 10.1371/journal.pone.0082006 24312621

43. Beyaert R, Vanhaesebroeck B, Declercq W, Van Lint J, Vandenabele P, et al. (1995) Casein kinase-1 phosphorylates the p75 tumor necrosis factor receptor and negatively regulates tumor necrosis factor signaling for apoptosis. J Biol Chem 270: 23293–23299. 7559483

44. Musiek ES, Lim MM, Yang G, Bauer AQ, Qi L, et al. (2013) Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration. J Clin Invest 123: 5389–5400. doi: 10.1172/JCI70317 24270424

45. Li C, Macdonald JI, Hryciw T, Meakin SO (2010) Nerve growth factor activation of the TrkA receptor induces cell death, by macropinocytosis, in medulloblastoma Daoy cells. J Neurochem 112: 882–899. doi: 10.1111/j.1471-4159.2009.06507.x 19943845

46. Schoenmann Z, Assa-Kunik E, Tiomny S, Minis A, Haklai-Topper L, et al. (2010) Axonal degeneration is regulated by the apoptotic machinery or a NAD+-sensitive pathway in insects and mammals. J Neurosci 30: 6375–6386. doi: 10.1523/JNEUROSCI.0922-10.2010 20445064

47. Fernandez MP, Berni J, Ceriani MF (2008) Circadian remodeling of neuronal circuits involved in rhythmic behavior. PLoS Biol 6: e69. doi: 10.1371/journal.pbio.0060069 18366255

48. Mehnert KI, Cantera R (2011) Circadian rhythms in the morphology of neurons in Drosophila. Cell Tissue Res 344: 381–389. doi: 10.1007/s00441-011-1174-x 21562943

49. Damulewicz M, Pyza E (2011) The clock input to the first optic neuropil of Drosophila melanogaster expressing neuronal circadian plasticity. PLoS One 6: e21258. doi: 10.1371/journal.pone.0021258 21760878

50. Sivachenko A, Li Y, Abruzzi KC, Rosbash M (2013) The transcription factor Mef2 links the Drosophila core clock to Fas2, neuronal morphology, and circadian behavior. Neuron 79: 281–292. doi: 10.1016/j.neuron.2013.05.015 23889933

51. D'Amelio M, Cavallucci V, Cecconi F (2010) Neuronal caspase-3 signaling: not only cell death. Cell Death Differ 17: 1104–1114. doi: 10.1038/cdd.2009.180 19960023

52. Allada R, White NE, So WV, Hall JC, Rosbash M (1998) A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell 93: 791–804. 9630223

53. Konopka RJ, Benzer S (1971) Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci U S A 68: 2112–2116. 5002428

54. Means JC, Muro I, Clem RJ (2006) Lack of involvement of mitochondrial factors in caspase activation in a Drosophila cell-free system. Cell Death Differ 13: 1222–1234. 16322754

55. Ali YO, Escala W, Ruan K, Zhai RG (2011) Assaying locomotor, learning, and memory deficits in Drosophila models of neurodegeneration. J Vis Exp. Mar 11;(49). pii: 2504.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#