#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Genetic Regulation of Bone Metabolism in the Chicken: Similarities and Differences to Mammalian Systems


In this work we seek to further the understanding of bone genetics by mapping bone traits and gene expression in the chicken. Bone in female birds is special due to egg production. In this study, we combine the genetic mapping of bone traits with bone gene expression to find candidate quantitative trait genes that explain the differences between wild and domestic chickens in terms of bone production. The concept of combining genetic mapping and gene expression mapping is not new, and has already been successful in isolating bone-related genes in mammals, however this is the first time it has been applied to an avian system with such unique bone modelling processes. We aim to reveal new molecular mechanisms of bone regulation, and many of the candidates we find are new, highlighting the potential this technique has to identify the potential differences between avian and mammalian bone biology.


Vyšlo v časopise: Genetic Regulation of Bone Metabolism in the Chicken: Similarities and Differences to Mammalian Systems. PLoS Genet 11(5): e32767. doi:10.1371/journal.pgen.1005250
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005250

Souhrn

In this work we seek to further the understanding of bone genetics by mapping bone traits and gene expression in the chicken. Bone in female birds is special due to egg production. In this study, we combine the genetic mapping of bone traits with bone gene expression to find candidate quantitative trait genes that explain the differences between wild and domestic chickens in terms of bone production. The concept of combining genetic mapping and gene expression mapping is not new, and has already been successful in isolating bone-related genes in mammals, however this is the first time it has been applied to an avian system with such unique bone modelling processes. We aim to reveal new molecular mechanisms of bone regulation, and many of the candidates we find are new, highlighting the potential this technique has to identify the potential differences between avian and mammalian bone biology.


Zdroje

1. Pizzari T, Birkhead TR (2000) Female feral fowl eject sperm of subordinate males. Nature 405: 787. 10866198

2. Pizzari T, Cornwallis CK, Lovlie H, Jakobsson S, Birkhead TR (2003) Sophisticated sperm allocation in male fowl. Nature 426: 70–73. 14603319

3. Budgell K, Silversides F (2004) Bone breakage in three strains of end-of-lay hens. Canadian journal of animal science 84: 745–747.

4. Webster A (2004) Welfare implications of avian osteoporosis. Poultry Science 83: 184–192. 14979568

5. Ralston SH, de Crombrugghe B (2006) Genetic regulation of bone mass and susceptibility to osteoporosis. Genes & Development 20: 2492–2506.

6. Bloom MA, Domm LV, Nalbandov AV, Bloom W (1958) Medullary bone of laying chickens. American Journal of Anatomy 102: 411–453. 13617222

7. Mueller WJ, Schraer R, Scharer H (1964) Calcium metabolism and skeletal dynamics of laying pullets. The Journal of nutrition 84: 20–26. 14210016

8. Van de Velde J, Vermeiden J, Touw J, Veldhuijzen J (1984) Changes in activity of chicken medullary bone cell populations in relation to the egg-laying cycle. Metabolic Bone Disease and Related Research 5: 191–193. 6738357

9. Kerschnitzki M, Zander T, Zaslansky P, Fratzl P, Shahar R, et al. (2014) Rapid alterations of avian medullary bone material during the daily egg-laying cycle. Bone 69: 109–117. doi: 10.1016/j.bone.2014.08.019 25204794

10. Whitehead C (2004) Skeletal disorders in laying hens: the probIem of osteoporosis and bone fractures. Welfare of the laying hen 27: 259.

11. Bishop S, Fleming R, McCormack H, Flock D, Whitehead C (2000) Inheritance of bone characteristics affecting osteoporosis in laying hens. British Poultry Science 41: 33–40. 10821520

12. Hocking P, Bain M, Channing C, Fleming R, Wilson S (2003) Genetic variation for egg production, egg quality and bone strength in selected and traditional breeds of laying fowl. British Poultry Science 44: 365–373. 12964619

13. Fleming R, McCormack H, McTeir L, Whitehead C (2006) Relationships between genetic, environmental and nutritional factors influencing osteoporosis in laying hens. British Poultry Science 47: 742–755. 17190683

14. Rennie J, Fleming R, McCormack H, McCorquodale C, Whitehead C (1997) Studies on effects of nutritional factors on bone structure and osteoporosis in laying hens. British Poultry Science 38: 417–424. 9347152

15. Ferrari S (2008) Human genetics of osteoporosis. Best Practice & Research Clinical Endocrinology & Metabolism 22: 723–735.

16. Little RD, Folz C, Manning SP, Swain PM, Zhao S-C, et al. (2002) A mutation in the LDL receptor—related protein 5 gene results in the autosomal dominant high—bone-mass trait. The American Journal of Human Genetics 70: 11–19.

17. Boyden LM, Mao J, Belsky J, Mitzner L, Farhi A, et al. (2002) High bone density due to a mutation in LDL-receptor—related protein 5. New England Journal of Medicine 346: 1513–1521. 12015390

18. Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, et al. (2001) LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107: 513–523. 11719191

19. Styrkarsdottir U, Cazier J-B, Kong A, Rolfsson O, Larsen H, et al. (2003) Linkage of Osteoporosis to Chromosome 20p12 and Association to BMP2. PLoS Biol 1: e69. 14691541

20. Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, Gudbjartsson DF, Walters GB, et al. (2008) Multiple genetic loci for bone mineral density and fractures. New England Journal of Medicine 358: 2355–2365. doi: 10.1056/NEJMoa0801197 18445777

21. Rivadeneira F, Styrkársdottir U, Estrada K, Halldórsson BV, Hsu Y-H, et al. (2009) Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nature Genetics 41: 1199–1206. doi: 10.1038/ng.446 19801982

22. Estrada K, Styrkarsdottir U, Evangelou E, Hsu Y-H, Duncan EL, et al. (2012) Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nature Genetics 44: 491–501. doi: 10.1038/ng.2249 22504420

23. Kung AW, Xiao S-M, Cherny S, Li GH, Gao Y, et al. (2010) Association of JAG1 with bone mineral density and osteoporotic fractures: a genome-wide association study and follow-up replication studies. The American Journal of Human Genetics 86: 229–239. doi: 10.1016/j.ajhg.2009.12.014 20096396

24. Timpson NJ, Tobias JH, Richards JB, Soranzo N, Duncan EL, et al. (2009) Common variants in the region around Osterix are associated with bone mineral density and growth in childhood. Human Molecular Genetics 18: 1510–1517. doi: 10.1093/hmg/ddp052 19181680

25. Duncan EL, Danoy P, Kemp JP, Leo PJ, McCloskey E, et al. (2011) Genome-wide association study using extreme truncate selection identifies novel genes affecting bone mineral density and fracture risk. PLoS Genetics 7: e1001372. doi: 10.1371/journal.pgen.1001372 21533022

26. Koller DL, Ichikawa S, Lai D, Padgett LR, Doheny KF, et al. (2010) Genome-wide association study of bone mineral density in premenopausal European-American women and replication in African-American women. Journal of Clinical Endocrinology & Metabolism 95: 1802–1809.

27. Zheng H-F, Tobias JH, Duncan E, Evans DM, Eriksson J, et al. (2012) WNT16 influences bone mineral density, cortical bone thickness, bone strength, and osteoporotic fracture risk. PLoS Genet 8: e1002745. doi: 10.1371/journal.pgen.1002745 22792071

28. Xiong D-H, Liu X-G, Guo Y-F, Tan L-J, Wang L, et al. (2009) Genome-wide association and follow-up replication studies identified ADAMTS18 and TGFBR3 as bone mass candidate genes in different ethnic groups. The American Journal of Human Genetics 84: 388–398. doi: 10.1016/j.ajhg.2009.01.025 19249006

29. Richards J, Rivadeneira F, Inouye M, Pastinen T, Soranzo N, et al. (2008) Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. The Lancet 371: 1505–1512. doi: 10.1016/S0140-6736(08)60599-1 18455228

30. Cho YS, Go MJ, Kim YJ, Heo JY, Oh JH, et al. (2009) A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nature Genetics 41: 527–534. doi: 10.1038/ng.357 19396169

31. Paternoster L, Lorentzon M, Vandenput L, Karlsson MK, Ljunggren Ö, et al. (2010) Genome-wide association meta-analysis of cortical bone mineral density unravels allelic heterogeneity at the RANKL locus and potential pleiotropic effects on bone. PLoS Genetics 6: e1001217. doi: 10.1371/journal.pgen.1001217 21124946

32. Mehrabian M, Allayee H, Stockton J, Lum P, Drake T, et al. (2005) Integrating genotypic and expression data in a segregating mouse population to identify 5-lipoxygenase as a susceptibility gene for obesity and bone traits. Nat Genet 37: 1224–1233. 16200066

33. Klein R, Allard J, Avnur Z, Nikolcheva T, Rotstein D, et al. (2004) Regulation of bone mass in mice by the lipoxygenase gene Alox15. Science 303: 229–232. 14716014

34. Mesner LD, Ray B, Hsu Y-H, Manichaikul A, Lum E, et al. (2014) Bicc1 is a genetic determinant of osteoblastogenesis and bone mineral density. The Journal of clinical investigation 124: 0–0.

35. Farber CR, Bennett BJ, Orozco L, Zou W, Lira A, et al. (2011) Mouse genome-wide association and systems genetics identify Asxl2 as a regulator of bone mineral density and osteoclastogenesis. PLoS Genetics 7: e1002038. doi: 10.1371/journal.pgen.1002038 21490954

36. Edderkaoui B, Baylink DJ, Beamer WG, Wergedal JE, Porte R, et al. (2007) Identification of mouse Duffy antigen receptor for chemokines (Darc) as a BMD QTL gene. Genome Research 17: 577–585. 17416748

37. Darvasi A, Soller M (1995) Advanced Intercross Lines, an experimental population for fine genetic-mapping. Genetics 141: 1199–1207. 8582624

38. Hillier LW, Miller W, Birney E, Warren W, Hardison RC, et al. (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432: 695–716. 15592404

39. Pérez-Martínez M, Gordón-Alonso M, Cabrero JR, Barrero-Villar M, Rey M, et al. (2010) F-actin-binding protein drebrin regulates CXCR4 recruitment to the immune synapse. Journal of Cell Science 123: 1160–1170. doi: 10.1242/jcs.064238 20215400

40. Hirbe AC, Rubin J, Uluçkan Ö, Morgan EA, Eagleton MC, et al. (2007) Disruption of CXCR4 enhances osteoclastogenesis and tumor growth in bone. Proceedings of the National Academy of Sciences 104: 14062–14067. 17715292

41. Tompson SW, Bacino CA, Safina NP, Bober MB, Proud VK, et al. (2010) Fibrochondrogenesis results from mutations in the COL11A1 type XI collagen gene. The American Journal of Human Genetics 87: 708–712. doi: 10.1016/j.ajhg.2010.10.009 21035103

42. Annunen S, Körkkö J, Czarny M, Warman ML, Brunner HG, et al. (1999) Splicing mutations of 54-bp exons in the COL11A1 gene cause Marshall syndrome, but other mutations cause overlapping Marshall/Stickler phenotypes. The American Journal of Human Genetics 65: 974–983. 10486316

43. Griffith AJ, Sprunger LK, Sirko-Osadsa DA, Tiller GE, Meisler MH, et al. (1998) Marshall syndrome associated with a splicing defect at the COL11A1 locus. The American Journal of Human Genetics 62: 816–823.

44. Jakkula E, Melkoniemi M, Kiviranta I, Lohiniva J, Räinä S, et al. (2005) The role of sequence variations within the genes encoding collagen II, IX and XI in non-syndromic, early-onset osteoarthritis. Osteoarthritis and Cartilage 13: 497–507. 15922184

45. Kahler RA, Yingst SM, Hoeppner LH, Jensen ED, Krawczak D, et al. (2008) Collagen 11a1 is indirectly activated by lymphocyte enhancer-binding factor 1 (Lef1) and negatively regulates osteoblast maturation. Matrix biology 27: 330–338. doi: 10.1016/j.matbio.2008.01.002 18280717

46. Shui C, Scutt A (2001) Mild Heat Shock Induces Proliferation, Alkaline Phosphatase Activity, and Mineralization in Human Bone Marrow Stromal Cells and Mg-63 Cells In Vitro. JBMR 16: 731–741. 11316001

47. Roccisana JL, Kawanabe N, Kajiya H, Koide M, Roodman GD, et al. (2004) Functional role for heat shock factors in the transcriptional regulation of human RANK ligand gene expression in stromal/osteoblast cells. Journal of Biological Chemistry 279: 10500–10507. 14699143

48. Kajiya H, Ito M, Ohshima H, Kenmotsu Si, Ries WL, et al. (2006) RANK ligand expression in heat shock factor-2 deficient mouse bone marrow stromal/preosteoblast cells. Journal of Cellular Biochemistry 97: 1362–1369. 16365894

49. Zhou L, Li LW, Yan Q, Petryniak B, Man Y, et al. (2008) Notch-dependent control of myelopoiesis is regulated by fucosylation. Blood 112: 308–319. doi: 10.1182/blood-2007-11-115204 18359890

50. Engin F, Yao Z, Yang T, Zhou G, Bertin T, et al. (2008) Dimorphic effects of Notch signaling in bone homeostasis. Nature medicine 14: 299–305. doi: 10.1038/nm1712 18297084

51. Bai S, Kopan R, Zou W, Hilton MJ, Ong C-t, et al. (2008) NOTCH1 regulates osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblast lineage cells. Journal of Biological Chemistry 283: 6509–6518. 18156632

52. Salasznyk RM, Klees RF, Williams WA, Boskey A, Plopper GE (2007) Focal adhesion kinase signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells. Experimental cell research 313: 22–37. 17081517

53. Tamura Y, Takeuchi Y, Suzawa M, Fukumoto S, Kato M, et al. (2001) Focal Adhesion Kinase activity is required for Bone Morphogenetic Protein—Smad1 signaling and osteoblastic differentiation in murine MC3T3-E1 cells. JBMR 16: 1772–1779. 11585340

54. O'Brien TW, O'Brien BJ, Norman RA (2005) Nuclear MRP genes and mitochondrial disease. Gene 354: 147–151. 15908146

55. Dai XM, Zong XH, Akhter MP, Stanley ER (2004) Osteoclast deficiency results in disorganized matrix, reduced mineralization, and abnormal osteoblast behavior in developing bone. JBMR 19: 1441–1451. 15312244

56. Woo J, Kwon S-K, Nam J, Choi S, Takahashi H, et al. (2013) The adhesion protein IgSF9b is coupled to neuroligin 2 via S-SCAM to promote inhibitory synapse development. The Journal of cell biology 201: 929–944. doi: 10.1083/jcb.201209132 23751499

57. Luo Y, Roeder RG (1995) Cloning, functional characterization, and mechanism of action of the B-cell-specific transcriptional coactivator OCA-B. Molecular and Cellular Biology 15: 4115–4124. 7623806

58. Auer RL, Starczynski J, McElwaine S, Bertoni F, Newland AC, et al. (2005) Identification of a potential role for POU2AF1 and BTG4 in the deletion of 11q23 in chronic lymphocytic leukemia. Genes, Chromosomes and Cancer 43: 1–10. 15672409

59. Yeo L, Toellner K-M, Salmon M, Filer A, Buckley CD, et al. (2011) Cytokine mRNA profiling identifies B cells as a major source of RANKL in rheumatoid arthritis. Annals of the rheumatic diseases 70: 2022–2028. doi: 10.1136/ard.2011.153312 21742639

60. Li Y, Toraldo G, Li A, Yang X, Zhang H, et al. (2007) B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood 109: 3839–3848. 17202317

61. Choi Y, Mi Woo K, Ko SH, Jung Lee Y, Park SJ, et al. (2001) Osteoclastogenesis is enhanced by activated B cells but suppressed by activated CD8+ T cells. European journal of immunology 31: 2179–2188. 11449372

62. Turnbull J, Powell A, Guimond S (2001) Heparan sulfate: decoding a dynamic multifunctional cell regulator. Trends in cell biology 11: 75–82. 11166215

63. Cool SM, Nurcombe V (2005) The osteoblast-heparan sulfate axis: control of the bone cell lineage. The international journal of biochemistry & cell biology 37: 1739–1745.

64. Beesley C, Burke D, Jackson M, Vellodi A, Winchester B, et al. (2003) Sanfilippo syndrome type D: identification of the first mutation in the N-acetylglucosamine-6-sulphatase gene. Journal of medical genetics 40: 192–194. 12624138

65. Mok A, Cao H, Hegele RA (2003) Genomic basis of mucopolysaccharidosis type IIID (MIM 252940) revealed by sequencing of GNS encoding N-acetylglucosamine-6-sulfatase. Genomics 81: 1–5. 12573255

66. Rigante D, Caradonna P (2004) Secondary skeletal involvement in Sanfilippo syndrome. Qjm 97: 205–209. 15028850

67. McClelland SE, Borusu S, Amaro AC, Winter JR, Belwal M, et al. (2007) The CENP-A NAC/CAD kinetochore complex controls chromosome congression and spindle bipolarity. The EMBO journal 26: 5033–5047. 18007590

68. Delany A, Amling M, Priemel M, Howe C, Baron R, et al. (2000) Osteopenia and decreased bone formation in osteonectin-deficient mice. Journal of Clinical Investigation 105: 915. 10749571

69. Termine JD, Kleinman HK, Whitson SW, Conn KM, McGarvey ML, et al. (1981) Osteonectin, a bone-specific protein linking mineral to collagen. Cell 26: 99–105. 7034958

70. Faiyaz-Ul-Haque M, Zaidi SHE, Al-Ali M, Al-Mureikhi MS, Kennedy S, et al. (2004) A novel missense mutation in the galactosyltransferase‐I (B4GALT7) gene in a family exhibiting facioskeletal anomalies and Ehlers—Danlos syndrome resembling the progeroid type. American Journal of Medical Genetics Part A 128: 39–45.

71. Götte M, Spillmann D, Yip GW, Versteeg E, Echtermeyer FG, et al. (2008) Changes in heparan sulfate are associated with delayed wound repair, altered cell migration, adhesion and contractility in the galactosyltransferase I (ß4GalT-7) deficient form of Ehlers—Danlos syndrome. Human Molecular Genetics 17: 996–1009. 18158310

72. Almeida R, Levery SB, Mandel U, Kresse H, Schwientek T, et al. (1999) Cloning and expression of a proteoglycan UDP-galactose: β-Xylose β1, 4-galactosyltransferase IA seventh member of the human β4-galactosyltransferase gene family. Journal of Biological Chemistry 274: 26165–26171. 10473568

73. Militello RD, Munafó DB, Berón W, López LA, Monier S, et al. (2013) Rab24 is required for normal cell division. Traffic 14: 502–518. doi: 10.1111/tra.12057 23387408

74. Kitching R, Qi S, Li V, Raouf A, Vary CP, et al. (2002) Coordinate gene expression patterns during osteoblast maturation and retinoic acid treatment of MC3T3-E1 cells. J Bone Miner Metab 20: 269–280. 12203032

75. Ono Y, Iemura S-i, Novak SM, Doi N, Kitamura F, et al. (2013) PLEIAD/SIMC1/C5orf25, a novel autolysis regulator for a skeletal-muscle-specific calpain, CAPN3, scaffolds a CAPN3 substrate, CTBP1. Journal of molecular biology 425: 2955–2972. doi: 10.1016/j.jmb.2013.05.009 23707407

76. Ciganoka D, Balcere I, Kapa I, Peculis R, Valtere A, et al. (2011) Identification of somatostatin receptor type 5 gene polymorphisms associated with acromegaly. European Journal of Endocrinology 165: 517–525. doi: 10.1530/EJE-11-0416 21810856

77. Ren S-G, Taylor J, Dong J, Yu R, Culler MD, et al. (2003) Functional association of somatostatin receptor subtypes 2 and 5 in inhibiting human growth hormone secretion. The Journal of Clinical Endocrinology & Metabolism 88: 4239–4245.

78. Bruns C, Dietl MM, Palacios JM, Pless J (1990) Identification and characterization of somatostatin receptors in neonatal rat long bones. Biochem J 265: 39–44. 1967933

79. Weiss RE, Reddi A, Nimni M (1981) Somatostatin can locally inhibit proliferation and differentiation of cartilage and bone precursor cells. Calcified Tissue International 33: 425–430. 6117356

80. Shao Y, Alicknavitch M, Farach-Carson MC (2005) Expression of voltage sensitive calcium channel (VSCC) L-type Cav1. 2 (α1C) and T‐type Cav3. 2 (α1H) subunits during mouse bone development. Developmental dynamics 234: 54–62. 16059921

81. Fodor J, Matta C, Oláh T, Juhász T, Takács R, et al. (2013) Store-operated calcium entry and calcium influx via voltage-operated calcium channels regulate intracellular calcium oscillations in chondrogenic cells. Cell calcium 54: 1–16. doi: 10.1016/j.ceca.2013.03.003 23664335

82. Baud'Huin M, Duplomb L, Téletchéa S, Charrier C, Maillasson M, et al. (2009) Factor VIII-von Willebrand factor complex inhibits osteoclastogenesis and controls cell survival. Journal of Biological Chemistry 284: 31704–31713. doi: 10.1074/jbc.M109.030312 19758994

83. Suva LJ, Hartman E, Dilley JD, Russell S, Akel NS, et al. (2008) Platelet dysfunction and a high bone mass phenotype in a murine model of platelet-type von Willebrand disease. The American journal of pathology 172: 430–439. doi: 10.2353/ajpath.2008.070417 18187573

84. Karasik D, Hsu Y-H, Zhou Y, Cupples LA, Kiel DP, et al. (2010) Genome-wide pleiotropy of osteoporosis‐related phenotypes: the Framingham study. JBMR 25: 1555–1563. doi: 10.1002/jbmr.38 20200953

85. Wright D, Rubin CJ, Martinez Barrio A, Schütz K, Kerje S, et al. (2010) The genetic architecture of domestication in the chicken: effects of pleiotropy and linkage. Molecular Ecology 19: 5140–5156. doi: 10.1111/j.1365-294X.2010.04882.x 21040053

86. Rubin CJ, Brändström H, Wright D, Kerje S, Gunnarsson U, et al. (2007) Quantitative trait loci for BMD and bone strength in an intercross between domestic and wildtype chickens. JBMR 22: 375–384. 17181401

87. Johnsson M, Rubin CJ, Höglund A, Sahlqvist AS, Jonsson K, et al. (2014) The role of pleiotropy and linkage in genes affecting a sexual ornament and bone allocation in the chicken. Molecular Ecology 23: 2275–2286. doi: 10.1111/mec.12723 24655072

88. Johnsson M, Gustafson I, Rubin C-J, Sahlqvist A-S, Jonsson KB, et al. (2012) A sexual ornament in chickens is affected by pleiotropic alleles at HAO1 and BMP2, selected during domestication. PLoS Genetics 8: e1002914. doi: 10.1371/journal.pgen.1002914 22956912

89. Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL maping in experimental crosses. Bioinformatics 19: 889–890. 12724300

90. Manichaikul A, Dupuis J, Sen S, Broman KW (2006) Poor Performance of Bootstrap Confidence Intervals for the Location of a Quantitative Trait Locus. Genetics 174: 481–489. 16783000

91. Kent W (2002) BLAT—the BLAST-like alignment tool. Genome Res 12: 656–664. 11932250

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#