#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Essential Role of the ESX-5 Secretion System in Outer Membrane Permeability of Pathogenic Mycobacteria


Mycobacteria have a thick protective outer membrane that helps them to withstand adverse conditions both outside and within the host. However, in order to cause disease, the bacterium also needs to secrete proteins across this outer membrane. To achieve this, mycobacteria possess so-called type VII secretion systems. One of these systems, the ESX-5 secretion system, is only present in the group of slow-growing mycobacteria, which contains most pathogenic species. In this study, we show that the ESX-5 system is essential for growth of mycobacteria. We found that when we generated a ‘leaky’ outer membrane, by interfering in the construction of the outer membrane, or by introducing an outer membrane porin, the ESX-5 system was no longer essential for growth. We additionally show that ESX-5 mediates uptake of fatty acids, which suggests that ESX-5 substrates can form specific transport systems or pores in the outer membrane required for the uptake of crucial nutrients. Understanding the role of ESX-5 in outer membrane permeability helps us to understand a fundamental difference between fast-growing and slow-growing mycobacteria. Since most pathogenic mycobacteria are slow-growing this helps us to understand the mycobacterial requirements for pathogenesis in more detail.


Vyšlo v časopise: Essential Role of the ESX-5 Secretion System in Outer Membrane Permeability of Pathogenic Mycobacteria. PLoS Genet 11(5): e32767. doi:10.1371/journal.pgen.1005190
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005190

Souhrn

Mycobacteria have a thick protective outer membrane that helps them to withstand adverse conditions both outside and within the host. However, in order to cause disease, the bacterium also needs to secrete proteins across this outer membrane. To achieve this, mycobacteria possess so-called type VII secretion systems. One of these systems, the ESX-5 secretion system, is only present in the group of slow-growing mycobacteria, which contains most pathogenic species. In this study, we show that the ESX-5 system is essential for growth of mycobacteria. We found that when we generated a ‘leaky’ outer membrane, by interfering in the construction of the outer membrane, or by introducing an outer membrane porin, the ESX-5 system was no longer essential for growth. We additionally show that ESX-5 mediates uptake of fatty acids, which suggests that ESX-5 substrates can form specific transport systems or pores in the outer membrane required for the uptake of crucial nutrients. Understanding the role of ESX-5 in outer membrane permeability helps us to understand a fundamental difference between fast-growing and slow-growing mycobacteria. Since most pathogenic mycobacteria are slow-growing this helps us to understand the mycobacterial requirements for pathogenesis in more detail.


Zdroje

1. World Health Organization (2013) Global tuberculosis report 2013.

2. Goodfellow & Jones (2012) Bergey’s Manual of Systematic Bacteriology: Volume 5: The Actinobacteria, Volume 5, Parts 1–2. Springer.

3. Alibaud L, Pawelczyk J, Gannoun-Zaki L, Singh VK, Rombouts Y, et al. (2013) Increased phagocytosis of Mycobacterium marinum mutants defective in lipooligosaccharide production: a structure-activity relationship study. J Biol Chem 289: 215–228. doi: 10.1074/jbc.M113.525550 24235141

4. Brennan PJ, Nikaido H (1995) The envelope of mycobacteria. Annu Rev Biochem 64: 29–63. 7574484

5. Camacho LR, Ensergueix D, Perez E, Gicquel B, Guilhot C (1999) Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol Microbiol 34: 257–267. 10564470

6. Yu J, Tran V, Li M, Huang X, Niu C, et al. (2012) Both phthiocerol dimycocerosates and phenolic glycolipids are required for virulence of Mycobacterium marinum. Infect Immun 80: 1381–1389. doi: 10.1128/IAI.06370-11 22290144

7. Hunter RL, Armitige L, Jagannath C, Actor JK (2009) TB research at UT-Houston—a review of cord factor: new approaches to drugs, vaccines and the pathogenesis of tuberculosis. Tuberculosis (Edinb) 89 Suppl 1: S18–25.

8. Hoffmann C, Leis A, Niederweis M, Plitzko JM, Engelhardt H (2008) Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc Natl Acad Sci U S A 105: 3963–3967. doi: 10.1073/pnas.0709530105 18316738

9. Zuber B, Chami M, Houssin C, Dubochet J, Griffiths G, et al. (2008) Direct visualization of the outer membrane of mycobacteria and corynebacteria in their native state. J Bacteriol 190: 5672–5680. doi: 10.1128/JB.01919-07 18567661

10. Purdy GE, Niederweis M, Russell DG (2009) Decreased outer membrane permeability protects mycobacteria from killing by ubiquitin-derived peptides. Mol Microbiol 73: 844–857. doi: 10.1111/j.1365-2958.2009.06801.x 19682257

11. Gao L-Y, Laval F, Lawson EH, Groger RK, Woodruff A, et al. (2003) Requirement for kasB in Mycobacterium mycolic acid biosynthesis, cell wall impermeability and intracellular survival: implications for therapy. Mol Microbiol 49: 1547–1563. 12950920

12. Stoop EJM, Bitter W, van der Sar AM (2012) Tubercle bacilli rely on a type VII army for pathogenicity. Trends Microbiol 20: 477–484. doi: 10.1016/j.tim.2012.07.001 22858229

13. Simeone R, Bottai D, Brosch R (2009) ESX/type VII secretion systems and their role in host-pathogen interaction. Curr Opin Microbiol 12: 4–10. doi: 10.1016/j.mib.2008.11.003 19155186

14. Houben ENG, Korotkov K V, Bitter W (2013) Take five—Type VII secretion systems of Mycobacteria. Biochim Biophys Acta 1843: 1707–1716. doi: 10.1016/j.bbamcr.2013.11.003 24263244

15. Bitter W, Houben ENG, Bottai D, Brodin P, Brown EJ, et al. (2009) Systematic genetic nomenclature for type VII secretion systems. PLoS Pathog 5: e1000507. doi: 10.1371/journal.ppat.1000507 19876390

16. Gey van Pittius NC, Sampson SL, Lee H, Kim Y, van Helden PD, et al. (2006) Evolution and expansion of the Mycobacterium tuberculosis PE and PPE multigene families and their association with the duplication of the ESAT-6 (esx) gene cluster regions. BMC Evol Biol 6: 95. 17105670

17. Houben ENG, Bestebroer J, Ummels R, Wilson L, Piersma SR, et al. (2012) Composition of the type VII secretion system membrane complex. Mol Microbiol 86: 472–484. doi: 10.1111/j.1365-2958.2012.08206.x 22925462

18. Champion PAD, Stanley SA, Champion MM, Brown EJ, Cox JS (2006) C-terminal signal sequence promotes virulence factor secretion in Mycobacterium tuberculosis. Science 313: 1632–1636. 16973880

19. Pym AS, Brodin P, Majlessi L, Brosch R, Demangel C, et al. (2003) Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nat Med 9: 533–539. 12692540

20. Ohol YM, Goetz DH, Chan K, Shiloh MU, Craik CS, et al. (2010) Mycobacterium tuberculosis MycP1 protease plays a dual role in regulation of ESX-1 secretion and virulence. Cell Host Microbe 7: 210–220. doi: 10.1016/j.chom.2010.02.006 20227664

21. Houben D, Demangel C, van Ingen J, Perez J, Baldeón L, et al. (2012) ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria. Cell Microbiol 14: 1287–1298. doi: 10.1111/j.1462-5822.2012.01799.x 22524898

22. Simeone R, Bobard A, Lippmann J, Bitter W, Majlessi L, et al. (2012) Phagosomal rupture by Mycobacterium tuberculosis results in toxicity and host cell death. PLoS Pathog 8: e1002507. doi: 10.1371/journal.ppat.1002507 22319448

23. Siegrist MS, Unnikrishnan M, McConnell MJ, Borowsky M, Cheng T-Y, et al. (2009) Mycobacterial Esx-3 is required for mycobactin-mediated iron acquisition. Proc Natl Acad Sci U S A 106: 18792–18797. doi: 10.1073/pnas.0900589106 19846780

24. Serafini A, Boldrin F, Palù G, Manganelli R (2009) Characterization of a Mycobacterium tuberculosis ESX-3 conditional mutant: essentiality and rescue by iron and zinc. J Bacteriol 191: 6340–6344. doi: 10.1128/JB.00756-09 19684129

25. Abdallah AM, Verboom T, Weerdenburg EM, Gey van Pittius NC, Mahasha PW, et al. (2009) PPE and PE_PGRS proteins of Mycobacterium marinum are transported via the type VII secretion system ESX-5. Mol Microbiol 73: 329–340. doi: 10.1111/j.1365-2958.2009.06783.x 19602152

26. Iantomasi R, Sali M, Cascioferro A, Palucci I, Zumbo A, et al. (2012) PE_PGRS30 is required for the full virulence of Mycobacterium tuberculosis. Cell Microbiol 14: 356–367. doi: 10.1111/j.1462-5822.2011.01721.x 22050772

27. Chaturvedi R, Bansal K, Narayana Y, Kapoor N, Sukumar N, et al. (2010) The multifunctional PE_PGRS11 protein from Mycobacterium tuberculosis plays a role in regulating resistance to oxidative stress. J Biol Chem 285: 30389–30403. doi: 10.1074/jbc.M110.135251 20558725

28. Abdallah AM, Savage NDL, van Zon M, Wilson L, Vandenbroucke-Grauls CMJE, et al. (2008) The ESX-5 secretion system of Mycobacterium marinum modulates the macrophage response. J Immunol 181: 7166–7175. 18981138

29. Van der Woude AD, Sarkar D, Bhatt A, Sparrius M, Raadsen S a, et al. (2012) Unexpected link between lipooligosaccharide biosynthesis and surface protein release in Mycobacterium marinum. J Biol Chem 287: 20417–20429. doi: 10.1074/jbc.M111.336461 22505711

30. Abdallah AM, Verboom T, Hannes F, Safi M, Strong M, et al. (2006) A specific secretion system mediates PPE41 transport in pathogenic mycobacteria. Mol Microbiol 62: 667–679. 17076665

31. Di Luca M, Bottai D, Batoni G, Orgeur M, Aulicino A, et al. (2012) The ESX-5 associated eccB-EccC locus is essential for Mycobacterium tuberculosis viability. PLoS One 7: e52059. doi: 10.1371/journal.pone.0052059 23284869

32. Bottai D, Di Luca M, Majlessi L, Frigui W, Simeone R, et al. (2012) Disruption of the ESX-5 system of Mycobacterium tuberculosis causes loss of PPE protein secretion, reduction of cell wall integrity and strong attenuation. Mol Microbiol 83: 1195–1209. doi: 10.1111/j.1365-2958.2012.08001.x 22340629

33. Bardarov S, Kriakov J, Carriere C, Yu S, Vaamonde C, et al. (1997) Conditionally replicating mycobacteriophages: a system for transposon delivery to Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 94: 10961–10966. 9380742

34. Pashley CA, Parish T (2003) Efficient switching of mycobacteriophage L5-based integrating plasmids in Mycobacterium tuberculosis. FEMS Microbiol Lett 229: 211–215. 14680701

35. Klotzsche M, Ehrt S, Schnappinger D (2009) Improved tetracycline repressors for gene silencing in mycobacteria. Nucleic Acids Res 37: 1778–1788. doi: 10.1093/nar/gkp015 19174563

36. Jones CM, Niederweis M (2010) Role of porins in iron uptake by Mycobacterium smegmatis. J Bacteriol 192: 6411–6417. doi: 10.1128/JB.00986-10 20952578

37. Stephan J, Bender J, Wolschendorf F, Hoffmann C, Roth E, et al. (2005) The growth rate of Mycobacterium smegmatis depends on sufficient porin-mediated influx of nutrients. Mol Microbiol 58: 714–730. 16238622

38. Stahl C, Kubetzko S, Kaps I, Seeber S, Engelhardt H, et al. (2001) MspA provides the main hydrophilic pathway through the cell wall of Mycobacterium smegmatis. Mol Microbiol 40: 451–464. 11309127

39. Stephan J, Mailaender C, Etienne G, Daffé M, Niederweis M (2004) Multidrug resistance of a porin deletion mutant of Mycobacterium smegmatis. Antimicrob Agents Chemother 48: 4163–4170. 15504836

40. Moncalián G, Cabezón E, Alkorta I, Valle M, Moro F, et al. (1999) Characterization of ATP and DNA binding activities of TrwB, the coupling protein essential in plasmid R388 conjugation. J Biol Chem 274: 36117–36124. 10593894

41. Cascales E, Christie PJ (2004) Agrobacterium VirB10, an ATP energy sensor required for type IV secretion. Proc Natl Acad Sci U S A 101: 17228–17233. 15569944

42. Daleke MH, van der Woude AD, Parret AH a, Ummels R, de Groot a M, et al. (2012) Specific chaperones for the type VII protein secretion pathway. J Biol Chem 287: 31939–31947. doi: 10.1074/jbc.M112.397596 22843727

43. Sani M, Houben ENG, Geurtsen J, Pierson J, de Punder K, et al. (2010) Direct visualization by cryo-EM of the mycobacterial capsular layer: a labile structure containing ESX-1-secreted proteins. PLoS Pathog 6: e1000794. doi: 10.1371/journal.ppat.1000794 20221442

44. Cascioferro A, Delogu G, Colone M, Sali M, Stringaro A, et al. (2007) PE is a functional domain responsible for protein translocation and localization on mycobacterial cell wall. Mol Microbiol 66: 1536–1547. 18028308

45. Kapopoulou A, Lew JM, Cole ST (2011) The MycoBrowser portal: a comprehensive and manually annotated resource for mycobacterial genomes. Tuberculosis (Edinb) 91: 8–13. doi: 10.1016/j.tube.2010.09.006 20980200

46. Weerdenburg EM, Abdallah AM, Rangkuti F, Abd El Ghany M, Otto TD, et al. (2015) Genome-wide transposon mutagenesis indicates that Mycobacterium marinum customizes its virulence mechanisms for survival and replication in different hosts. Infect Immun: IAI.03050–14. 25690095

47. Daleke MH, Ummels R, Bawono P, Heringa J, Vandenbroucke-Grauls CMJE, et al. (2012) General secretion signal for the mycobacterial type VII secretion pathway. Proc Natl Acad Sci U S A 109: 11342–11347. doi: 10.1073/pnas.1119453109 22733768

48. Griffin JE, Gawronski JD, Dejesus MA, Ioerger TR, Akerley BJ, et al. (2011) High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog 7: e1002251. doi: 10.1371/journal.ppat.1002251 21980284

49. Pritchard JR, Chao MC, Abel S, Davis BM, Baranowski C, et al. (2014) ARTIST: High-Resolution Genome-Wide Assessment of Fitness Using Transposon-Insertion Sequencing. PLoS Genet 10: e1004782. doi: 10.1371/journal.pgen.1004782 25375795

50. Eoh H, Rhee KY (2014) Methylcitrate cycle defines the bactericidal essentiality of isocitrate lyase for survival of Mycobacterium tuberculosis on fatty acids. Proc Natl Acad Sci U S A 111: 4976–4981. doi: 10.1073/pnas.1400390111 24639517

51. Capyk JK, Kalscheuer R, Stewart GR, Liu J, Kwon H, et al. (2009) Mycobacterial cytochrome p450 125 (cyp125) catalyzes the terminal hydroxylation of c27 steroids. J Biol Chem 284: 35534–35542. doi: 10.1074/jbc.M109.072132 19846551

52. Daleke MH, Cascioferro A, de Punder K, Ummels R, Abdallah AM, et al. (2011) Conserved Pro-Glu (PE) and Pro-Pro-Glu (PPE) protein domains target LipY lipases of pathogenic mycobacteria to the cell surface via the ESX-5 pathway. J Biol Chem 286: 19024–19034. doi: 10.1074/jbc.M110.204966 21471225

53. Daniel J, Maamar H, Deb C, Sirakova TD, Kolattukudy PE (2011) Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog 7: e1002093. doi: 10.1371/journal.ppat.1002093 21731490

54. Sirakova TD, Dubey VS, Deb C, Daniel J, Korotkova TA, et al. (2006) Identification of a diacylglycerol acyltransferase gene involved in accumulation of triacylglycerol in Mycobacterium tuberculosis under stress. Microbiology 152: 2717–2725. 16946266

55. Weerdenburg EM, Abdallah AM, Mitra S, de Punder K, van der Wel NN, et al. (2012) ESX-5-deficient Mycobacterium marinum is hypervirulent in adult zebrafish. Cell Microbiol 14: 728–739. doi: 10.1111/j.1462-5822.2012.01755.x 22256857

56. Camacho LR, Constant P, Raynaud C, Laneelle MA, Triccas JA, et al. (2001) Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. J Biol Chem 276: 19845–19854. 11279114

57. Sampson SL (2011) Mycobacterial PE/PPE proteins at the host-pathogen interface. Clin Dev Immunol 2011: 497203. doi: 10.1155/2011/497203 21318182

58. Danilchanka O, Sun J, Pavlenok M, Maueröder C, Speer A, et al. (2014) An outer membrane channel protein of Mycobacterium tuberculosis with exotoxin activity. Proc Natl Acad Sci U S A 111: 6750–6755. doi: 10.1073/pnas.1400136111 24753609

59. Van der Woude AD, Mahendran KR, Ummels R, Piersma SR, Pham TV, et al. (2013) Differential detergent extraction of Mycobacterium marinum cell envelope proteins identifies an extensively modified threonine-rich outer membrane protein with channel activity. J Bacteriol 195: 2050–2059. doi: 10.1128/JB.02236-12 23457249

60. Solomonson M, Setiaputra D, Makepeace KAT, Lameignere E, Petrotchenko E V, et al. (2015) Structure of EspB from the ESX-1 Type VII secretion system and insights into its export mechanism. Structure, 23: 571–583. doi: 10.1016/j.str.2015.01.002 25684576

61. Kirksey MA, Tischler AD, Siméone R, Hisert KB, Uplekar S, et al. (2011) Spontaneous phthiocerol dimycocerosate-deficient variants of Mycobacterium tuberculosis are susceptible to gamma interferon-mediated immunity. Infect Immun 79: 2829–2838. doi: 10.1128/IAI.00097-11 21576344

62. Domenech P, Reed MB (2009) Rapid and spontaneous loss of phthiocerol dimycocerosate (PDIM) from Mycobacterium tuberculosis grown in vitro: implications for virulence studies. Microbiology 155: 3532–3543. doi: 10.1099/mic.0.029199-0 19661177

63. Sharbati-Tehrani S, Stephan J, Holland G, Appel B, Niederweis M, et al. (2005) Porins limit the intracellular persistence of Mycobacterium smegmatis. Microbiology 151: 2403–2410. 16000730

64. Wolschendorf F, Mahfoud M, Niederweis M (2007) Porins are required for uptake of phosphates by Mycobacterium smegmatis. J Bacteriol 189: 2435–2442. 17209034

65. Niederweis M, Ehrt S, Heinz C, Klöcker U, Karosi S, et al. (1999) Cloning of the mspA gene encoding a porin from Mycobacterium smegmatis. Mol Microbiol 33: 933–945. 10476028

66. Stover CK, de la Cruz VF, Fuerst TR, Burlein JE, Benson LA, et al. (1991) New use of BCG for recombinant vaccines. Nature 351: 456–460. 1904554

67. Timm J, Lim EM, Gicquel B (1994) Escherichia coli-mycobacteria shuttle vectors for operon and gene fusions to lacZ: the pJEM series. J Bacteriol 176: 6749–6753. 7961429

68. Danilchanka O, Mailaender C, Niederweis M (2008) Identification of a novel multidrug efflux pump of Mycobacterium tuberculosis. Antimicrob Agents Chemother 52: 2503–2511. doi: 10.1128/AAC.00298-08 18458127

69. Sassetti CM, Boyd DH, Rubin EJ (2003) Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48: 77–84. 12657046

70. Minnikin D., Dobson G, Parlett JH (1985) Extraction and Chromatographic Analysis of Characteristic Mycobacterial Lipids. In: Habermehl KO, editor. Rapid Methods and Automation in Microbiology and Immunology. Berlin/Heidelberg: Springer Verlag. pp. 274–282

71. Besra GS (1998) Preparation of cell-wall fractions from mycobacteria. In: Parish T, Stoker NG, editors. Mycobacteria protocols. New York: Humana Press. pp. 91–107

72. Piersma SR, Warmoes MO, de Wit M, de Reus I, Knol JC, et al. (2013) Whole gel processing procedure for GeLC-MS/MS based proteomics. Proteome Sci 11: 17. doi: 10.1186/1477-5956-11-17 23617947

73. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26: 1367–1372. doi: 10.1038/nbt.1511 19029910

74. Liu H, Sadygov RG, Yates JR (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76: 4193–4201. 15253663

75. Pham T V, Piersma SR, Warmoes M, Jimenez CR (2010) On the beta-binomial model for analysis of spectral count data in label-free tandem mass spectrometry-based proteomics. Bioinformatics 26: 363–369. doi: 10.1093/bioinformatics/btp677 20007255

76. Langridge GC, Phan M-D, Turner DJ, Perkins TT, Parts L, et al. (2009) Simultaneous assay of every Salmonella typhi gene using one million transposon mutants. Genome Res 19: 2308–2316. doi: 10.1101/gr.097097.109 19826075

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#