#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A LINE-1 Insertion in DLX6 Is Responsible for Cleft Palate and Mandibular Abnormalities in a Canine Model of Pierre Robin Sequence


Cleft palate is one of the most commonly occurring birth defects in children, and yet its cause is not completely understood. In order to better understand cleft palate we have turned to man's best friend, the domestic dog. Common breeding practices have made the dog a unique animal model to help understand the genetic basis of naturally occurring birth defects. A genome-wide association study of Nova Scotia Duck Tolling Retrievers with naturally occurring cleft palate led to the investigation of two homeobox genes, DLX5 and DLX6. Dogs with this mutation also have a shortened lower jaw, which resembles those who have Pierre Robin Sequence (PRS). Investigation into people with PRS identifies a mutation within a highly conserved and functional region of DLX5 that may contribute to the development of PRS. This exemplifies how the dog will help us better understand common birth defects.


Vyšlo v časopise: A LINE-1 Insertion in DLX6 Is Responsible for Cleft Palate and Mandibular Abnormalities in a Canine Model of Pierre Robin Sequence. PLoS Genet 10(4): e32767. doi:10.1371/journal.pgen.1004257
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004257

Souhrn

Cleft palate is one of the most commonly occurring birth defects in children, and yet its cause is not completely understood. In order to better understand cleft palate we have turned to man's best friend, the domestic dog. Common breeding practices have made the dog a unique animal model to help understand the genetic basis of naturally occurring birth defects. A genome-wide association study of Nova Scotia Duck Tolling Retrievers with naturally occurring cleft palate led to the investigation of two homeobox genes, DLX5 and DLX6. Dogs with this mutation also have a shortened lower jaw, which resembles those who have Pierre Robin Sequence (PRS). Investigation into people with PRS identifies a mutation within a highly conserved and functional region of DLX5 that may contribute to the development of PRS. This exemplifies how the dog will help us better understand common birth defects.


Zdroje

1. ParkerSE, MaiCT, CanfieldMA, RickardR, WangY, et al. (2010) Updated National Birth Prevalence estimates for selected birth defects in the United States, 2004–2006. Birth Defects Res A Clin Mol Teratol 88: 1008–1016.

2. PerssonC, ElanderA, Lohmander-AgerskovA, ES (2002) Speech outcomes in isolated cleft palate: impact of cleft extent and additional malformations. Cleft Palate Craniofac J 39: 397–408.

3. ChristensenK, PBM (2002) Facial clefting and psychiatric diseases: a follow-up of the Danish 1936–1987 Facial Cleft cohort. Cleft Palate Craniofac J 39: 392–396.

4. ConradAL, CanadyJ, RichmanL, PN (2008) Incidence of neurological soft signs in children with isolated cleft of the lip or palate. Percept Mot Skills 106: 197–206.

5. BushJO, RJ (2012) Palatogenesis: morphogenetic and molecular mechanisms of secondary palate development. Development 139: 231–243.

6. BushPG, WilliamsAJ (1983) Incidence of the Robin Anomalad (Pierre Robin syndrome). Br J Plast Surg 36: 434–437.

7. RicksJE, RyderVM, BridgewaterLC, SchaaljeB, RES (2002) Altered mandibular development precedes the time of palate closure in mice homozygous for disproportionate micromelia: an oral clefting model supporting the Pierre-Robin sequence. Teratology 65: 116–120.

8. CohenMM (1999) Robin sequences and complexes: causal heterogeneity and pathogenetic/phenotypic variability. Am J Med Genet 84: 311–315.

9. PrintzlauA, MA (2004) Pierre Robin sequence in Denmark: a retrospective population-based epidemiological study. Cleft Palate Craniofac J 41: 47–52.

10. JakobsenLP, UllmannR, ChristensenSB, JensenKE, ale (2007) Pierre Robin sequence may be caused by dysregulation of SOX9 and KCNJ2. J Med Genet 44: 381–386.

11. BenkoS, FantesJA, AmielJ, KleinjanDJ, ThomasS, et al. (2009) Highly conserved non-coding elements on either side of SOX9 associated with Pierre Robin sequence. Nat Genet 41: 359–364.

12. JakobsenLP, KnudsenMA, LespinasseJ, Garcia AyusoC, RamosC, et al. (2006) The genetic basis of the Pierre Robin Sequence. Cleft Palate Craniofac J 43: 155–159.

13. Holder-EspinasseM, AbadieV, Cormier-DaireV, BeylerC, ManachY, et al. (2001) Pierre Robin sequence: a series of 117 consecutive cases. J Pediatr 139: 588–590.

14. PoswilloD (1966) Observations of fetal posture and causal mechanisms of congenital deformity of palate, mandible and limbs. J Dent Res 45: 584–596.

15. RichtsmeierJT, SackGHJr, GrauszHM, LCC (1994) Cleft palate with autosomal recessive transmission in Brittany spaniels. Cleft Palate Craniofac J 31: 364–371.

16. MouraE, CirioSM, CTP (2011) Non-Syndromic Cleft Lip and Palate in Boxer Dogs: Evidence of Monogenic Autosomal Recessive Inheritance. Cleft Palate Craniofac J 49: 759–60 doi:10.1597/11-110

17. KempC, ThieleH, DankofA, SchmidtG, LausterC, et al. (2009) Cleft lip and/or palate with monogenic autosomal recessive transmission in Pyrenees shepherd dogs. Cleft Palate Craniofac J 46: 81–88.

18. BoykoAR, QuignonP, LiL, SchoenebeckJJ, DegenhardtJD, et al. (2010) A simple genetic architecture underlies morphological variation in dogs. PLoS Biol 8: e1000451.

19. Lindblad-TohK, WadeCM, MikkelsenTS, KarlssonEK, JaffeDB, et al. (2005) Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438: 803–819.

20. AcamporaD, MerloGR, PaleariL, ZeregaB, PostiglioneMP, et al. (1999) Craniofacial, vestibular and bone defects in mice lacking the Distal-less-related gene Dlx5. Development 126: 3795–3809.

21. DepewMJ, LiuJK, LongJE, PresleyR, MenesesJJ, et al. (1999) Dlx5 regulates regional development of the branchial arches and sensory capsules. Development 126: 3831–3846.

22. JeongJ, LiX, McEvillyRJ, RosenfeldMG, LufkinT, et al. (2008) Dlx genes pattern mammalian jaw primordium by regulating both lower jaw-specific and upper jaw-specific genetic programs. Development 135: 2905–2916.

23. MorgulisA, CoulourisG, RaytselisY, MaddenTL, AgarwalaR, et al. (2008) Database indexing for production MegaBLAST searches. Bioinformatics 24: 1757–1764.

24. PfafflMW, HorganGW, LD (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30: e36.

25. AbecasisGR, AutonA, BrooksLD, DePristoMA, DurbinRM, et al. (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491: 56–65.

26. Exome Variant Server. In: (ESP) NGESP, editor. Seattle, WA.

27. SimeoneA, AcamporaD, PanneseM, D'EspositoM, StornaiuoloA, et al. (1994) Cloning and characterization of two members of the vertebrate Dlx gene family. Proc Natl Acad Sci U S A 91: 2250–2254.

28. RobledoRF, RajanL, LiX, TL (2002) The Dlx5 and Dlx6 homeobox genes are essential for craniofacial, axial, and appendicular skeletal development. Genes Dev 16: 1089–1101.

29. BeverdamA, MerloGR, PaleariL, ManteroS, GenovaF, et al. (2002) Jaw transformation with gain of symmetry after Dlx5/Dlx6 inactivation: mirror of the past? Genesis 34: 221–227.

30. HedgeS, PraveenBN, SRS (2013) Morphological and Radiological Variation of Mandibular Condyles in Health and Diseases: A Systematic Review. Dentistry 3: 154 doi:10.4172/2161-1122.1000154

31. JohnsonJM, MoonisG, GreenGE, CarmodyR, HNB (2011) Syndromes of the first and second branchial arches, part 2: syndromes. AJNR Am J Neuroradiol 32: 230–237.

32. ClarkeL, HepworthWB, CareyJC, RES (1988) Chondrodystrophic mice with coincidental agnathia: evidence for the tongue obstruction hypothesis in cleft palate. Teratology 38: 565–570.

33. LavrinIO, McLeanW, SeegmillerRE, OlsenBR, EDH (2001) The mechanism of palatal clefting in the Col11a1 mutant mouse. Arch Oral Biol 46: 865–869.

34. SeegmillerRE, FCF (1977) Mandibular growth retardation as a cause of cleft palate in mice homozygous for the chondrodysplasia gene. J Embryol Exp Morphol 38: 227–238.

35. CohenMMJr (1978) Syndromes with cleft lip and cleft palate. Cleft Palate J 15: 306–328.

36. D'EliaAV, TellG, ParonI, PellizzariL, LonigroR, et al. (2001) Missense mutations of human homeoboxes: A review. Hum Mutat 18: 361–374.

37. SameeN, GeoffroyV, MartyC, SchiltzC, Vieux-RochasM, et al. (2009) Increased bone resorption and osteopenia in Dlx5 heterozygous mice. J Cell Biochem 107: 865–872.

38. DamanteG, PellizzariL, EspositoG, FogolariF, ViglinoP, et al. (1996) A molecular code dictates sequence-specific DNA recognition by homeodomains. EMBO J 15: 4992–5000.

39. ShamseldinHE, FadenMA, AlashramW, FSA (2012) Identification of a novel DLX5 mutation in a family with autosomal recessive split hand and foot malformation. J Med Genet 49: 16–20.

40. HanJ, MayoJ, XuX, LiJ, BringasPJr, et al. (2009) Indirect modulation of Shh signaling by Dlx5 affects the oral-nasal patterning of palate and rescues cleft palate in Msx1-null mice. Development 136: 4225–4233.

41. PoitrasL, YuM, Lesage-PelletierC, MacdonaldRB, GagneJP, et al. (2010) An SNP in an ultraconserved regulatory element affects Dlx5/Dlx6 regulation in the forebrain. Development 137: 3089–3097.

42. BrownKK, ReissJA, CrowK, FergusonHL, KellyC, et al. (2010) Deletion of an enhancer near DLX5 and DLX6 in a family with hearing loss, craniofacial defects, and an inv(7)(q21.3q35). Hum Genet 127: 19–31.

43. BoyerLA, PlathK, ZeitlingerJ, BrambrinkT, MedeirosLA, et al. (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441: 349–353.

44. KirknessEF, BafnaV, HalpernAL, LevyS, RemingtonK, et al. (2003) The dog genome: survey sequencing and comparative analysis. Science 301: 1898–1903.

45. SzakST, PickeralOK, MakalowskiW, BoguskiMS, LandsmanD, et al. (2002) Molecular archeology of L1 insertions in the human genome. Genome Biol 3: research0052.

46. SmithBF, YueY, WoodsPR, KornegayJN, ShinJH, et al. (2011) An intronic LINE-1 element insertion in the dystrophin gene aborts dystrophin expression and results in Duchenne-like muscular dystrophy in the corgi breed. Lab Invest 91: 216–231.

47. MeischlC, BoerM, AhlinA, DR (2000) A new exon created by intronic insertion of a rearranged LINE-1 element as the cause of chronic granulomatous disease. Eur J Hum Genet 8: 697–703.

48. LanderES, LintonLM, BirrenB, NusbaumC, ZodyMC, et al. (2001) Initial sequencing and analysis of the human genome. Nature 409: 860–921.

49. KouwenhovenEN, van HeeringenSJ, TenaJJ, OtiM, DutilhBE, et al. (2010) Genome-wide profiling of p63 DNA-binding sites identifies an element that regulates gene expression during limb development in the 7q21 SHFM1 locus. PLoS Genet 6: e1001065.

50. ZeruchaT, StuhmerT, HatchG, ParkBK, LongQ, et al. (2000) A highly conserved enhancer in the Dlx5/Dlx6 intergenic region is the site of cross-regulatory interactions between Dlx genes in the embryonic forebrain. J Neurosci 20: 709–721.

51. FengJ, BiC, ClarkBS, MadyR, ShahP, et al. (2006) The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev 20: 1470–1484.

52. KM (2010) Population structure and genetic diversity of worldwide Nova Scotia Duck Tolling Retriever and Lancashire Heeler dog populations. Journal of Animal Breeding and Genetics 127: 318–326.

53. PurcellS, NealeB, Todd-BrownK, ThomasL, FerreiraMA, et al. (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81: 559–575.

54. R Development Core Team. (2012) R: A Language and Environment for Statistical Computing. 2.15.1 ed. Vienna, Austria.

55. RozenS, HS (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132: 365–386.

56. ToonenRJ, SH (2001) Increased throughput for fragment analysis on an ABI PRISM 377 automated sequencer using a membrane comb and STRand software. Biotechniques 31: 1320–1324.

57. LangeK, CantorR, HorvathS, PerolaM, SabattiC, et al. (2001) MENDEL version 4.0: A complete package for the exact genetic analysis of discrete traits in pedigree and population data sets. American Journal of Human Genetics 69(supplement): 504.

58. BrinkhofB, SpeeB, RothuizenJ, LCP (2006) Development and evaluation of canine reference genes for accurate quantification of gene expression. Anal Biochem 356: 36–43.

59. McLarenW, PritchardB, RiosD, ChenY, FlicekP, et al. (2010) Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics 26: 2069–2070.

60. StataCorp (2011) Stata Statistical Software. Release 12 ed. College Station, TX: StataCorp LP.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#