#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Epigenetic Regulation by Heritable RNA


Genomic concepts are based on the assumption that phenotypes arise from the expression of genetic variants. However, the presence of non-Mendelian inheritance patterns provides a direct challenge to this view and suggests an important role for alternative mechanisms of gene regulation and inheritance. Over the past few years, a highly complex and diverse network of noncoding RNAs has been discovered. Research in animal models has shown that RNAs can be inherited and that RNA methyltransferases can be important for the transmission and expression of modified phenotypes in the next generation. We discuss possible mechanisms of RNA-mediated inheritance and the role of these mechanisms for human health and disease.


Vyšlo v časopise: Epigenetic Regulation by Heritable RNA. PLoS Genet 10(4): e32767. doi:10.1371/journal.pgen.1004296
Kategorie: Review
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004296

Souhrn

Genomic concepts are based on the assumption that phenotypes arise from the expression of genetic variants. However, the presence of non-Mendelian inheritance patterns provides a direct challenge to this view and suggests an important role for alternative mechanisms of gene regulation and inheritance. Over the past few years, a highly complex and diverse network of noncoding RNAs has been discovered. Research in animal models has shown that RNAs can be inherited and that RNA methyltransferases can be important for the transmission and expression of modified phenotypes in the next generation. We discuss possible mechanisms of RNA-mediated inheritance and the role of these mechanisms for human health and disease.


Zdroje

1. HardyJ, SingletonA (2009) Genomewide association studies and human disease. N Engl J Med 360: 1759–1768.

2. BickmoreWA (2013) The spatial organization of the human genome. Annu Rev Genomics Hum Genet 14: 67–84.

3. BirdA (2007) Perceptions of epigenetics. Nature 447: 396–398.

4. FeinbergAP (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447: 433–440.

5. KouzaridesT (2007) Chromatin modifications and their function. Cell 128: 693–705.

6. JonesPA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13: 484–492.

7. ReikW (2007) Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447: 425–432.

8. SeisenbergerS, PeatJR, ReikW (2013) Conceptual links between DNA methylation reprogramming in the early embryo and primordial germ cells. Curr Opin Cell Biol 25: 281–288.

9. SmithZD, MeissnerA (2013) DNA methylation: roles in mammalian development. Nat Rev Genet 14: 204–220.

10. WeaverIC, CervoniN, ChampagneFA, D'AlessioAC, SharmaS, et al. (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7: 847–854.

11. LillycropKA, PhillipsES, TorrensC, HansonMA, JacksonAA, et al. (2008) Feeding pregnant rats a protein-restricted diet persistently alters the methylation of specific cytosines in the hepatic PPAR alpha promoter of the offspring. Br J Nutr 100: 278–282.

12. DaxingerL, WhitelawE (2012) Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nat Rev Genet 13: 153–162.

13. LimJP, BrunetA (2013) Bridging the transgenerational gap with epigenetic memory. Trends Genet 29: 176–186.

14. RassoulzadeganM, GrandjeanV, GounonP, VincentS, GillotI, et al. (2006) RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature 441: 469–474.

15. WagnerKD, WagnerN, GhanbarianH, GrandjeanV, GounonP, et al. (2008) RNA induction and inheritance of epigenetic cardiac hypertrophy in the mouse. Dev Cell 14: 962–969.

16. GrandjeanV, GounonP, WagnerN, MartinL, WagnerKD, et al. (2009) The miR-124-Sox9 paramutation: RNA-mediated epigenetic control of embryonic and adult growth. Development 136: 3647–3655.

17. WatanabeT, TotokiY, ToyodaA, KanedaM, Kuramochi-MiyagawaS, et al. (2008) Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453: 539–543.

18. TamOH, AravinAA, SteinP, GirardA, MurchisonEP, et al. (2008) Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453: 534–538.

19. WatanabeT, TomizawaS, MitsuyaK, TotokiY, YamamotoY, et al. (2011) Role for piRNAs and noncoding RNA in de novo DNA methylation of the imprinted mouse Rasgrf1 locus. Science 332: 848–852.

20. MooreGP, Lintern-MooreS, PetersH, FaberM (1974) RNA synthesis in the mouse oocyte. J Cell Biol 60: 416–422.

21. GrunewaldS, PaaschU, GlanderHJ, AndereggU (2005) Mature human spermatozoa do not transcribe novel RNA. Andrologia 37: 69–71.

22. OstermeierGC, DixDJ, MillerD, KhatriP, KrawetzSA (2002) Spermatozoal RNA profiles of normal fertile men. Lancet 360: 772–777.

23. KrawetzSA (2005) Paternal contribution: new insights and future challenges. Nat Rev Genet 6: 633–642.

24. WalserCB, LipshitzHD (2011) Transcript clearance during the maternal-to-zygotic transition. Curr Opin Genet Dev 21: 431–443.

25. OstermeierGC, MillerD, HuntrissJD, DiamondMP, KrawetzSA (2004) Reproductive biology: delivering spermatozoan RNA to the oocyte. Nature 429: 154.

26. LolleSJ, VictorJL, YoungJM, PruittRE (2005) Genome-wide non-mendelian inheritance of extra-genomic information in Arabidopsis. Nature 434: 505–509.

27. EvsikovAV, GraberJH, BrockmanJM, HamplA, HolbrookAE, et al. (2006) Cracking the egg: molecular dynamics and evolutionary aspects of the transition from the fully grown oocyte to embryo. Genes Dev 20: 2713–2727.

28. MotorinY, LykoF, HelmM (2010) 5-methylcytosine in RNA: detection, enzymatic formation and biological functions. Nucleic Acids Res 38: 1415–1430.

29. KianiJ, GrandjeanV, LiebersR, TuortoF, GhanbarianH, et al. (2013) RNA-mediated epigenetic heredity requires the cytosine methyltransferase Dnmt2. PLoS Genet 9: e1003498.

30. Lykke-AndersenK, GilchristMJ, GrabarekJB, DasP, MiskaE, et al. (2008) Maternal Argonaute 2 is essential for early mouse development at the maternal-zygotic transition. Mol Biol Cell 19: 4383–4392.

31. SvobodaP, FlemrM (2010) The role of miRNAs and endogenous siRNAs in maternal-to-zygotic reprogramming and the establishment of pluripotency. EMBO Rep 11: 590–597.

32. SuhN, BlellochR (2011) Small RNAs in early mammalian development: from gametes to gastrulation. Development 138: 1653–1661.

33. EbertMS, SharpPA (2012) Roles for microRNAs in conferring robustness to biological processes. Cell 149: 515–524.

34. HansenTB, JensenTI, ClausenBH, BramsenJB, FinsenB, et al. (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495: 384–388.

35. MemczakS, JensM, ElefsiniotiA, TortiF, KruegerJ, et al. (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495: 333–338.

36. SongR, HennigGW, WuQ, JoseC, ZhengH, et al. (2011) Male germ cells express abundant endogenous siRNAs. Proc Natl Acad Sci U S A 108: 13159–13164.

37. CernilogarFM, OnoratiMC, KotheGO, BurroughsAM, ParsiKM, et al. (2011) Chromatin-associated RNA interference components contribute to transcriptional regulation in Drosophila. Nature 480: 391–395.

38. MercerTR, MattickJS (2013) Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 20: 300–307.

39. PengH, ShiJ, ZhangY, ZhangH, LiaoS, et al. (2012) A novel class of tRNA-derived small RNAs extremely enriched in mature mouse sperm. Cell Res 22: 1609–1612.

40. HausseckerD, HuangY, LauA, ParameswaranP, FireAZ, et al. (2010) Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA 16: 673–695.

41. DurdevicZ, SchaeferM (2013) tRNA modifications: necessary for correct tRNA-derived fragments during the recovery from stress? Bioessays 35: 323–327.

42. IvanovP, EmaraMM, VillenJ, GygiSP, AndersonP (2011) Angiogenin-induced tRNA fragments inhibit translation initiation. Mol Cell 43: 613–623.

43. DominissiniD, Moshitch-MoshkovitzS, Salmon-DivonM, AmariglioN, RechaviG (2012) Transcriptome-wide mapping of N(6)-methyladenosine by m(6)A-seq based on immunocapturing and massively parallel sequencing. Nat Protoc 8: 176–189.

44. MeyerKD, SaletoreY, ZumboP, ElementoO, MasonCE, et al. (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149: 1635–1646.

45. SchaeferM, PollexT, HannaK, LykoF (2009) RNA cytosine methylation analysis by bisulfite sequencing. Nucleic Acids Res 37: e12.

46. SquiresJE, PatelHR, NouschM, SibbrittT, HumphreysDT, et al. (2012) Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res 40: 5023–5033.

47. KhoddamiV, CairnsBR (2013) Identification of direct targets and modified bases of RNA cytosine methyltransferases. Nat Biotechnol 31: 458–464.

48. PerssonH, KvistA, Vallon-ChristerssonJ, MedstrandP, BorgA, et al. (2009) The non-coding RNA of the multidrug resistance-linked vault particle encodes multiple regulatory small RNAs. Nat Cell Biol 11: 1268–1271.

49. HussainS, SajiniAA, BlancoS, DietmannS, LombardP, et al. (2013) NSun2-Mediated Cytosine-5 Methylation of Vault Noncoding RNA Determines Its Processing into Regulatory Small RNAs. Cell Rep 4: 255–261.

50. RaddatzG, GuzzardoPM, OlovaN, FantappieMR, RamppM, et al. (2013) Dnmt2-dependent methylomes lack defined DNA methylation patterns. Proc Natl Acad Sci U S A 110: 8627–8631.

51. GollMG, KirpekarF, MaggertKA, YoderJA, HsiehCL, et al. (2006) Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 311: 395–398.

52. SchaeferM, PollexT, HannaK, TuortoF, MeusburgerM, et al. (2010) RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage. Genes Dev 24: 1590–1595.

53. TuortoF, LiebersR, MuschT, SchaeferM, HofmannS, et al. (2012) RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nat Struct Mol Biol 19: 900–905.

54. DurdevicZ, MobinMB, HannaK, LykoF, SchaeferM (2013) The RNA Methyltransferase Dnmt2 Is Required for Efficient Dicer-2-Dependent siRNA Pathway Activity in Drosophila. Cell Rep 4: 931–937.

55. OkanoM, XieS, LiE (1998) Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet 19: 219–220.

56. YoderJA, BestorTH (1998) A candidate mammalian DNA methyltransferase related to pmt1p of fission yeast. Hum Mol Genet 7: 279–284.

57. RobertsRJ, CarneiroMO, SchatzMC (2013) The advantages of SMRT sequencing. Genome Biol 14: 405.

58. SchneiderGF, DekkerC (2012) DNA sequencing with nanopores. Nat Biotechnol 30: 326–328.

59. KonigJ, ZarnackK, RotG, CurkT, KayikciM, et al. (2010) iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat Struct Mol Biol 17: 909–915.

60. ZhangC, DarnellRB (2011) Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data. Nat Biotechnol 29: 607–614.

61. JiaG, FuY, ZhaoX, DaiQ, ZhengG, et al. (2011) N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 7: 885–887.

62. YangJ, LoosRJ, PowellJE, MedlandSE, SpeliotesEK, et al. (2012) FTO genotype is associated with phenotypic variability of body mass index. Nature 490: 267–272.

63. Abbasi-MohebL, MertelS, GonsiorM, Nouri-VahidL, KahriziK, et al. (2012) Mutations in NSUN2 cause autosomal-recessive intellectual disability. Am J Hum Genet 90: 847–855.

64. KhanMA, RafiqMA, NoorA, HussainS, FloresJV, et al. (2012) Mutation in NSUN2, which encodes an RNA methyltransferase, causes autosomal-recessive intellectual disability. Am J Hum Genet 90: 856–863.

65. MartinezFJ, LeeJH, LeeJE, BlancoS, NickersonE, et al. (2012) Whole exome sequencing identifies a splicing mutation in NSUN2 as a cause of a Dubowitz-like syndrome. J Med Genet 49: 380–385.

66. HussainS, TuortoF, MenonS, BlancoS, CoxC, et al. (2013) The mouse cytosine-5 RNA methyltransferase NSun2 is a component of the chromatoid body and required for testis differentiation. Mol Cell Biol 33: 1561–1570.

67. ManolioTA, CollinsFS, CoxNJ, GoldsteinDB, HindorffLA, et al. (2009) Finding the missing heritability of complex diseases. Nature 461: 747–753.

68. BygrenLO, KaatiG, EdvinssonS (2001) Longevity determined by paternal ancestors' nutrition during their slow growth period. Acta Biotheor 49: 53–59.

69. KaatiG, BygrenLO, EdvinssonS (2002) Cardiovascular and diabetes mortality determined by nutrition during parents' and grandparents' slow growth period. Eur J Hum Genet 10: 682–688.

70. LumeyLH, SteinAD, KahnHS, van der Pal-de BruinKM, BlauwGJ, et al. (2007) Cohort profile: the Dutch Hunger Winter families study. Int J Epidemiol 36: 1196–1204.

71. LumeyLH, SteinAD, KahnHS, RomijnJA (2009) Lipid profiles in middle-aged men and women after famine exposure during gestation: the Dutch Hunger Winter Families Study. Am J Clin Nutr 89: 1737–1743.

72. PainterRC, OsmondC, GluckmanP, HansonM, PhillipsDI, et al. (2008) Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life. Bjog 115: 1243–1249.

73. Ferguson-SmithAC, PattiME (2011) You are what your dad ate. Cell Metab 13: 115–117.

74. TobiEW, SlagboomPE, van DongenJ, KremerD, SteinAD, et al. (2012) Prenatal famine and genetic variation are independently and additively associated with DNA methylation at regulatory loci within IGF2/H19. PLoS One 7: e37933.

75. NgSF, LinRC, LaybuttDR, BarresR, OwensJA, et al. (2010) Chronic high-fat diet in fathers programs beta-cell dysfunction in female rat offspring. Nature 467: 963–966.

76. CaroneBR, FauquierL, HabibN, SheaJM, HartCE, et al. (2010) Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143: 1084–1096.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#