-
Články
- Časopisy
- Kurzy
- Témy
- Kongresy
- Videa
- Podcasty
Mutations in Conserved Residues of the microRNA Argonaute ALG-1 Identify Separable Functions in ALG-1 miRISC Loading and Target Repression
microRNAs are small non-coding RNAs that function in diverse processes by post-transcriptionally regulating gene expression. Argonautes form the core of the microRNA Induced Silencing Complex (miRISC) and are required for microRNA biogenesis and function. Here we describe the identification and characterization of a novel set of mutations in alg-1, a Caenorhabditis elegans microRNA specific Argonaute. This new class of alg-1 mutations causes phenotypes more severe than the complete loss of alg-1. Interestingly, the mutant ALG-1 proteins are able to promote microRNA biogenesis, but are defective in mediating microRNA target gene repression. We found that mutant ALG-1 associates more with Dicer, but less with miRISC effector AIN-1, compared to wild type ALG-1. We propose that these mutant ALG-1 proteins assemble nonfunctional complexes that effectively compete with the paralogous ALG-2 for critical miRISC components, including mature microRNAs. This new class of Argonaute mutants highlights the role of Argonaute in mediating a functional transition for miRISC from microRNA processing phase to target repression phase.
Vyšlo v časopise: Mutations in Conserved Residues of the microRNA Argonaute ALG-1 Identify Separable Functions in ALG-1 miRISC Loading and Target Repression. PLoS Genet 10(4): e32767. doi:10.1371/journal.pgen.1004286
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004286Souhrn
microRNAs are small non-coding RNAs that function in diverse processes by post-transcriptionally regulating gene expression. Argonautes form the core of the microRNA Induced Silencing Complex (miRISC) and are required for microRNA biogenesis and function. Here we describe the identification and characterization of a novel set of mutations in alg-1, a Caenorhabditis elegans microRNA specific Argonaute. This new class of alg-1 mutations causes phenotypes more severe than the complete loss of alg-1. Interestingly, the mutant ALG-1 proteins are able to promote microRNA biogenesis, but are defective in mediating microRNA target gene repression. We found that mutant ALG-1 associates more with Dicer, but less with miRISC effector AIN-1, compared to wild type ALG-1. We propose that these mutant ALG-1 proteins assemble nonfunctional complexes that effectively compete with the paralogous ALG-2 for critical miRISC components, including mature microRNAs. This new class of Argonaute mutants highlights the role of Argonaute in mediating a functional transition for miRISC from microRNA processing phase to target repression phase.
Zdroje
1. ResnickTD, McCullochKA, RougvieAE (2010) miRNAs give worms the time of their lives: Small RNAs and temporal control in Caenorhabditis elegans. Dev Dyn 239 : 1477–1489 doi:10.1002/dvdy.22260
2. AbbottAL, Alvarez-SaavedraE, MiskaEA, LauNC, BartelDP, et al. (2005) The let-7 MicroRNA Family Members mir-48, mir-84, and mir-241 Function Together to Regulate Developmental Timing in Caenorhabditis elegans. Developmental Cell 9 : 403–414 doi:10.1016/j.devcel.2005.07.009
3. ReinhartBJ, SlackFJ, BassonM, PasquinelliAE, BettingerJC, et al. (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403 : 901–906.
4. FabianMR, SonenbergN (2012) The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol 19 : 586–593 doi:10.1038/nsmb.2296
5. FabianMR, SonenbergN, FilipowiczW (2010) Regulation of mRNA Translation and Stability by microRNAs. Annu Rev Biochem 79 : 351–379 doi:10.1146/annurev-biochem-060308-103103
6. DingXC, WeilerJ, GroßhansH (2009) Regulating the regulators: mechanisms controlling the maturation of microRNAs. Trends in Biotechnology 27 : 27–36 doi:10.1016/j.tibtech.2008.09.006
7. FilipowiczW, BhattacharyyaSN, SonenbergN (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature Publishing Group 2008 : 102–114 doi:10.1038/nrg2290
8. BouaskerS, SimardMJ (2012) The slicing activity of miRNA-specific Argonautes is essential for the miRNA pathway in C. elegans. Nucleic Acids Research 40 : 10452–10462 doi:10.1093/nar/gks748
9. GrishokA, PasquinelliAE, ConteD, LiN, ParrishS, et al. (2001) Genes and Mechanisms Related to RNA Interference Regulate Expression of the Small Temporal RNAs that Control C. elegans Developmental Timing. Cell 106 : 23–34.
10. MeisterG (2013) Argonaute proteins: functional insights and emerging roles. Nature Publishing Group 14 : 447–459 doi:10.1038/nrg3462
11. ZhangL, DingL, CheungTH, DongM-Q, ChenJ, et al. (2007) Systematic Identification of C. elegans miRISC Proteins, miRNAs, and mRNA Targets by Their Interactions with GW182 Proteins AIN-1 and AIN-2. Molecular Cell 28 : 598–613 doi:10.1016/j.molcel.2007.09.014
12. DingL, SpencerA, MoritaK, HanM (2005) The Developmental Timing Regulator AIN-1 Interacts with miRISCs and May Target the Argonaute Protein ALG-1 to Cytoplasmic P Bodies in C. elegans. Molecular Cell 19 : 437–447 doi:10.1016/j.molcel.2005.07.013
13. EulalioA, HuntzingerE, IzaurraldeE (2008) GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay. Nat Struct Mol Biol 15 : 346–353 doi:10.1038/nsmb.1405
14. REHWINKELJ (2005) A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. RNA 11 : 1640–1647 doi:10.1261/rna.2191905
15. LiuJ, RivasFV, WohlschlegelJ, YatesJR, ParkerR, et al. (2005) A role for the P-body component GW182 in microRNA function. Nature Cell Biology 7 : 1261–1266 doi:10.1038/ncb1333
16. JakymiwA, LianS, EystathioyT, LiS, SatohM, et al. (2005) Disruption of GW bodies impairs mammalian RNA interference. Nature Cell Biology 7 : 1267–1274 doi:10.1038/ncb1334
17. MeisterG, LandthalerM, PetersL, ChenPY, UrlaubH, et al. (2005) Identification of Novel Argonaute-Associated Proteins. Current Biology 15 : 2149–2155 doi:10.1016/j.cub.2005.10.048
18. MossEG, LeeRC, AmbrosV (1997) The Cold Shock Domain Protein LIN-28 Controls Developmental Timing in C. elegans and Is Regulated by the lin-4 RNA. Cell 88 : 637–646.
19. AmbrosV, HorvitzHR (1984) Heterochronic mutants of the nematode Caenorhabditis elegans. Science 226 : 409–416.
20. VadlaB, KemperK, AlaimoJ, HeineC, MossEG (2012) lin-28 controls the succession of cell fate choices via two distinct activities. 8 : 11 doi:10.1371/journal.pgen.1002588
21. Van WynsberghePM, KaiZS, MassirerKB, BurtonVH, YeoGW, et al. (2011) LIN-28 co-transcriptionally binds primary let-7 to regulate miRNA maturation in Caenorhabditis elegans. Nat Struct Mol Biol 18 : 302–308 doi:10.1038/nsmb.1986
22. LehrbachNJ, ArmisenJ, LightfootHL, MurfittKJ, BugautA, et al. (2009) LIN-28 and the poly(U) polymerase PUP-2 regulate let-7 microRNA processing in Caenorhabditis elegans. Nat Struct Mol Biol 16 : 1016–1020 doi:10.1038/nsmb.1675
23. HaganJP, PiskounovaE, GregoryRI (2009) Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nat Struct Mol Biol 16 : 1021–1025 doi:10.1038/nsmb.1676
24. HeoI, JooC, KimY-K, HaM, YoonM-J, et al. (2009) TUT4 in Concert with Lin28 Suppresses MicroRNA Biogenesis through Pre-MicroRNA Uridylation. Cell 138 : 696–708 doi:10.1016/j.cell.2009.08.002
25. HeoI, JooC, ChoJ, HaM, HanJ, et al. (2008) Lin28 Mediates the Terminal Uridylation of let-7 Precursor MicroRNA. Molecular Cell 32 : 276–284 doi:10.1016/j.molcel.2008.09.014
26. NewmanMA, ThomsonJM, HammondSM (2008) Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 14 : 1539–1549 doi:10.1261/rna.1155108
27. PiskounovaE, ViswanathanSR, JanasM, LaPierreRJ, DaleyGQ, et al. (2008) Determinants of MicroRNA Processing Inhibition by the Developmentally Regulated RNA-binding Protein Lin28. Journal of Biological Chemistry 283 : 21310–21314 doi:10.1074/jbc.C800108200
28. ViswanathanSR, DaleyGQ, GregoryRI (2008) Selective Blockade of MicroRNA Processing by Lin28. Science 320 : 97–100 doi:10.1126/science.1154040
29. AbrahanteJE, DaulAL, LiM, VolkML, TennessenJM, et al. (2003) The Caenorhabditis elegans hunchback-like Gene lin-57/hbl-1 Controls Developmental Time and Is Regulated by MicroRNAs. Developmental Cell 4 : 625–637.
30. LinS-Y, JohnsonSM, AbrahamM, VellaMC, PasquinelliA, et al. (2003) The C elegans hunchback homolog, hbl-1, controls temporal patterning and is a probable microRNA target. Developmental Cell 4 : 639–650.
31. RoushSF, SlackFJ (2009) Transcription of the C. elegans let-7 microRNA is temporally regulated by one of its targets, hbl-1. Dev Biol 334 : 523–534 doi:10.1016/j.ydbio.2009.07.012
32. MoritaKK, HanMM (2006) Multiple mechanisms are involved in regulating the expression of the developmental timing regulator lin-28 in Caenorhabditis elegans. EMBO J 25 : 5794–5804 doi:10.1038/sj.emboj.7601451
33. MossEG (2007) Heterochronic Genes and the Nature of Developmental Time. Current Biology 17: R425–R434 Available: http://www.sciencedirect.com/science/article/pii/S0960982207011475.
34. EulingS, AmbrosV (1996) Heterochronic genes control cell cycle progress and developmental competence of C. elegans vulva precursor cells. Cell 84 : 667–676 doi:10.1016/S0092-8674(00)81045-4
35. PepperASR (2004) The C. elegans heterochronic gene lin-46 affects developmental timing at two larval stages and encodes a relative of the scaffolding protein gephyrin. Development 131 : 2049–2059 doi:10.1242/dev.01098
36. JohnstonRJ, HobertO (2003) A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature 426 : 845–849 doi:10.1038/nature02255
37. SarinS, O'MearaMM, FlowersEB, AntonioC, PooleRJ, et al. (2007) Genetic Screens for Caenorhabditis elegans Mutants Defective in Left/Right Asymmetric Neuronal Fate Specification. Genetics 176 : 2109–2130 doi:10.1534/genetics.107.075648
38. ChangSS, JohnstonRJR, HobertOO (2003) A transcriptional regulatory cascade that controls left/right asymmetry in chemosensory neurons of C. elegans. Genes & Development 17 : 2123–2137 doi:10.1101/gad.1117903
39. Vasquez-RifoA, JannotG, ArmisenJ, LabouesseM, BukhariSIA, et al. (2012) Developmental Characterization of the MicroRNA-Specific C. elegans Argonautes alg-1 and alg-2. PLoS ONE 7: e33750 doi:10.1371/journal.pone.0033750.s005
40. Alvarez-SaavedraE, HorvitzHR (2010) Many Families of C. elegans MicroRNAs Are Not Essential for Development or Viability. Current Biology 20 : 367–373 doi:10.1016/j.cub.2009.12.051
41. MiskaEA, Alvarez-SaavedraE, AbbottAL, LauNC, HellmanAB, et al. (2007) Most Caenorhabditis elegans microRNAs Are Individually Not Essential for Development or Viability. PLoS Genet 3: e215 doi:10.1371/journal.pgen.0030215.st003
42. BrennerJL, JasiewiczKL, FahleyAF, KempBJ, AbbottAL (2010) Loss of Individual MicroRNAs Causes Mutant Phenotypes in Sensitized Genetic Backgrounds in C. elegans. Current Biology 20 : 1321–1325 doi:10.1016/j.cub.2010.05.062
43. FrankF, SonenbergN, NagarB (2010) Structural basis for 5′-nucleotide base-specific recognition of guide RNA by human AGO2. Nature 465 : 818–822 doi:10.1038/nature09039
44. WangY, JuranekS, LiH, ShengG, WardleGS, et al. (2009) Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature 461 : 754–761 doi:10.1038/nature08434
45. MaJ-B, YuanY-R, MeisterG, PeiY, TuschlT, et al. (2005) Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature Cell Biology 434 : 666–670 doi:10.1038/nature03514
46. ParkerJS, RoeSM, BarfordD (2005) Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex. Nature 434 : 663–666 doi:10.1038/nature03462
47. WangY, JuranekS, LiH, ShengG, TuschlT, et al. (2008) Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature 456 : 921–926 doi:10.1038/nature07666
48. WangY, ShengG, JuranekS, TuschlT, PatelDJ (2008) Structure of the guide-strand-containing argonaute silencing complex. Nature 456 : 209–213 doi:10.1038/nature07315
49. MaJ-B, YeK, PatelDJ (2004) Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature 429 : 318–322 doi:10.1038/nature02519
50. SchirleNT, MacRaeIJ (2012) The Crystal Structure of Human Argonaute2. Science 336 : 1037–1040 doi:10.1126/science.1221551
51. NakanishiK, WeinbergDE, BartelDP, PatelDJ (2012) Structure of yeast Argonaute with guide RNA. Nature 486 : 368–374 doi:10.1038/nature11211
52. DuchaineTF, WohlschlegelJA, KennedyS, BeiY, ConteDJr, et al. (2006) Functional Proteomics Reveals the Biochemical Niche of C. elegans DCR-1 in Multiple Small-RNA-Mediated Pathways. Cell 124 : 343–354 doi:10.1016/j.cell.2005.11.036
53. SawhAN, DuchaineTF (2013) A Truncated Form of Dicer Tilts the Balance of RNA Interference Pathways. Cell Reports 4 : 454–463 doi:10.1016/j.celrep.2013.07.013
54. WildwaterM, SanderN, de VreedeG, van den HeuvelS (2011) Cell shape and Wnt signaling redundantly control the division axis of C. elegans epithelial stem cells. Development 138 : 4375–4385 doi:10.1242/dev.066431
55. TOPSBBJ, PLASTERKRHA, KETTINGRF (2006) The Caenorhabditis elegans Argonautes ALG-1 and ALG-2: Almost Identical yet Different. Cold Spring Harbor Symposia on Quantitative Biology 71 : 189–194 doi:10.1101/sqb.2006.71.035
56. LiuJ (2004) Argonaute2 Is the Catalytic Engine of Mammalian RNAi. Science 305 : 1437–1441 doi:10.1126/science.1102513
57. MeisterG, LandthalerM, PatkaniowskaA, DorsettY, TengG, et al. (2004) Human Argonaute2 Mediates RNA Cleavage Targeted by miRNAs and siRNAs. Molecular Cell 15 : 185–197 doi:10.1016/j.molcel.2004.07.007
58. PILLAIRS (2004) Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. RNA 10 : 1518–1525 doi:10.1261/rna.7131604
59. KumarMS, LuJ, MercerKL, GolubTR, JacksT (2007) Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 39 : 673–677 doi:10.1038/ng2003
60. KoestersR, AdamsV, BettsD, MoosR, SchmidM, et al. (1999) Human eukaryotic initiation factor EIF2C1 gene: cDNA sequence, genomic organization, localization to chromosomal bands 1p34-p35, and expression. Genomics 61 : 210–218 doi:10.1006/geno.1999.5951
61. DomeJS, CoppesMJ (2002) Recent advances in Wilms tumor genetics. Curr Opin Pediatr 14 : 5–11.
62. KimMS, OhJE, KimYR, ParkSW, KangMR, et al. (2010) Somatic mutations and losses of expression of microRNA regulationrelated genes AGO2 and TNRC6A in gastric and colorectal cancers. J Pathol 221 : 139–146 doi:10.1002/path.2683
63. BahubeshiAA, TischkowitzMM, FoulkesWDW (2011) miRNA processing and human cancer: DICER1 cuts the mustard. Sci Transl Med 3 : 111ps46–111ps46 doi:10.1126/scitranslmed.3002493
64. KumarMS, PesterRE, ChenCY, LaneK, ChinC, et al. (2009) Dicer1 functions as a haploinsufficient tumor suppressor. Genes & Development 23 : 2700–2704 doi:10.1101/gad.1848209
65. BrennerS (1974) The Genetics of CAENORHABDITIS ELEGANS. Genetics 77 : 71–94.
66. WicksSR, YehRT, GishWR, WaterstonRH, PlasterkRH (2001) Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map. Nat Genet 28 : 160–164 doi:10.1038/88878
67. AbrahanteJE, MillerEA, RougvieAE (1998) Identification of heterochronic mutants in Caenorhabditis elegans: temporal misexpression of a collagen:: green fluorescent protein fusion gene. Genetics 149 : 1335–1351.
68. ChapinSC, AppleyardDC, PregibonDC, DoylePS (2011) Rapid microRNA Profiling on Encoded Gel Microparticles. Angew Chem Int Ed 50 : 2289–2293 doi:10.1002/anie.201006523
69. LEERC (2006) Interacting endogenous and exogenous RNAi pathways in Caenorhabditis elegans. RNA 12 : 589–597 doi:10.1261/rna.2231506
70. LEERC (2001) An Extensive Class of Small RNAs in Caenorhabditis elegans. Science 294 : 862–864 doi:10.1126/science.1065329
71. KamathRS, Martinez-CamposM, ZipperlenP, FraserAG, AhringerJ (2001) Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biology 2: RESEARCH0002 doi:10.1186/gb-2000-2-1-research0002
72. ZouY, ChiuH, ZinovyevaA, AmbrosV, ChuangC-F, et al. (2013) Developmental decline in neuronal regeneration by the progressive change of two intrinsic timers. Science 340 : 372–376 doi:10.1126/science.1231321
Štítky
Genetika Reprodukčná medicína
Článok vyšiel v časopisePLOS Genetics
Najčítanejšie tento týždeň
2014 Číslo 4- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
-
Všetky články tohto čísla
- The Challenges of Mitochondrial Replacement
- Concocting Cholinergy
- Genome-Wide Diet-Gene Interaction Analyses for Risk of Colorectal Cancer
- Statistical Power to Detect Genetic (Co)Variance of Complex Traits Using SNP Data in Unrelated Samples
- Mouse Pulmonary Adenoma Susceptibility 1 Locus Is an Expression QTL Modulating -4A
- Transcription-Associated R-Loop Formation across the Human CGG-Repeat Region
- Epigenetic Regulation by Heritable RNA
- Protein Quantitative Trait Loci Identify Novel Candidates Modulating Cellular Response to Chemotherapy
- Genome-Wide Profiling of Yeast DNA:RNA Hybrid Prone Sites with DRIP-Chip
- The Mechanism of Gene Targeting in Human Somatic Cells
- A LINE-1 Insertion in DLX6 Is Responsible for Cleft Palate and Mandibular Abnormalities in a Canine Model of Pierre Robin Sequence
- Interaction between Two Timing MicroRNAs Controls Trichome Distribution in
- DNA Glycosylases Involved in Base Excision Repair May Be Associated with Cancer Risk in and Mutation Carriers
- The Myc-Mondo/Mad Complexes Integrate Diverse Longevity Signals
- Evolutionarily Diverged Regulation of X-chromosomal Genes as a Primal Event in Mouse Reproductive Isolation
- Mutations in Conserved Residues of the microRNA Argonaute ALG-1 Identify Separable Functions in ALG-1 miRISC Loading and Target Repression
- Genetic Predisposition to In Situ and Invasive Lobular Carcinoma of the Breast
- Isl1 Directly Controls a Cholinergic Neuronal Identity in the Developing Forebrain and Spinal Cord by Forming Cell Type-Specific Complexes
- A Synthetic Community Approach Reveals Plant Genotypes Affecting the Phyllosphere Microbiota
- The Sequence-Specific Transcription Factor c-Jun Targets Cockayne Syndrome Protein B to Regulate Transcription and Chromatin Structure
- Determining the Control Circuitry of Redox Metabolism at the Genome-Scale
- DNA Repair Pathway Selection Caused by Defects in , , and Telomere Addition Generates Specific Chromosomal Rearrangement Signatures
- Methylome Diversification through Changes in DNA Methyltransferase Sequence Specificity
- Folliculin Regulates Ampk-Dependent Autophagy and Metabolic Stress Survival
- Fine Mapping of Dominant -Linked Incompatibility Alleles in Hybrids
- Unexpected Role of the Steroid-Deficiency Protein Ecdysoneless in Pre-mRNA Splicing
- Three Groups of Transposable Elements with Contrasting Copy Number Dynamics and Host Responses in the Maize ( ssp. ) Genome
- Sox5 Functions as a Fate Switch in Medaka Pigment Cell Development
- Synergistic Interactions between the Molecular and Neuronal Circadian Networks Drive Robust Behavioral Circadian Rhythms in
- Chromatin Landscapes of Retroviral and Transposon Integration Profiles
- Widespread Use of Non-productive Alternative Splice Sites in
- Ras GTPase-Like Protein MglA, a Controller of Bacterial Social-Motility in Myxobacteria, Has Evolved to Control Bacterial Predation by
- Cell Type-Specific Functions of Genes Revealed by Novel Adipocyte and Hepatocyte Circadian Clock Models
- Phenotype Ontologies and Cross-Species Analysis for Translational Research
- Embryogenesis Scales Uniformly across Temperature in Developmentally Diverse Species
- In Pursuit of the Gene: An Interview with James Schwartz
- Molecular Mechanisms of Hypoxic Responses via Unique Roles of Ras1, Cdc24 and Ptp3 in a Human Fungal Pathogen
- Analysis of the Genome and Transcriptome of var. Reveals Complex RNA Expression and Microevolution Leading to Virulence Attenuation
- Genotypic and Functional Impact of HIV-1 Adaptation to Its Host Population during the North American Epidemic
- RNA Editome in Rhesus Macaque Shaped by Purifying Selection
- Proper Actin Ring Formation and Septum Constriction Requires Coordinated Regulation of SIN and MOR Pathways through the Germinal Centre Kinase MST-1
- Interplay of the Serine/Threonine-Kinase StkP and the Paralogs DivIVA and GpsB in Pneumococcal Cell Elongation and Division
- A Quality Control Mechanism Coordinates Meiotic Prophase Events to Promote Crossover Assurance
- CNNM2 Mutations Cause Impaired Brain Development and Seizures in Patients with Hypomagnesemia
- The RNA-Binding Protein QKI Suppresses Cancer-Associated Aberrant Splicing
- Uncoupling Transcription from Covalent Histone Modification
- Rad51–Rad52 Mediated Maintenance of Centromeric Chromatin in
- FRA2A Is a CGG Repeat Expansion Associated with Silencing of
- A General Approach for Haplotype Phasing across the Full Spectrum of Relatedness
- A Novel Highly Divergent Protein Family Identified from a Viviparous Insect by RNA-seq Analysis: A Potential Target for Tsetse Fly-Specific Abortifacients
- A Central Role for in Regulation of Islet Function in Man
- PLOS Genetics
- Archív čísel
- Aktuálne číslo
- Informácie o časopise
Najčítanejšie v tomto čísle- The Sequence-Specific Transcription Factor c-Jun Targets Cockayne Syndrome Protein B to Regulate Transcription and Chromatin Structure
- The Mechanism of Gene Targeting in Human Somatic Cells
- Genetic Predisposition to In Situ and Invasive Lobular Carcinoma of the Breast
- Widespread Use of Non-productive Alternative Splice Sites in
Prihlásenie#ADS_BOTTOM_SCRIPTS#Zabudnuté hesloZadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.
- Časopisy