-
Články
- Časopisy
- Kurzy
- Témy
- Kongresy
- Videa
- Podcasty
Transcription-Associated R-Loop Formation across the Human CGG-Repeat Region
Expansion of a CGG-repeat element within the human FMR1 gene is responsible for multiple human diseases, including fragile X syndrome and fragile X-associated tremor/ataxia syndrome (FXTAS). These diseases occur in separate ranges of repeat length and are characterized by profoundly different molecular mechanisms. Fragile X syndrome results from FMR1 gene silencing, whereas FXTAS is associated with an increase in transcription and toxicity of the CGG-repeat-containing mRNA. This study introduces a previously unknown molecular feature of the FMR1 locus, namely the co-transcriptional formation of three-stranded R-loop structures upon re-annealing of the nascent FMR1 transcript to the template DNA strand. R-loops are involved in the normal function of human CpG island promoters in that they contribute to protecting these sequences from DNA methylation. However, excessive R-loop formation can lead to activation of the DNA damage response and result in genomic instability. We used antibody recognition and chemical single-stranded DNA footprinting to show that R-loops form at the FMR1 locus with increasing frequency and greater structural complexity as the CGG-repeat length increases. This discovery provides a missing piece of both the complex FMR1 molecular puzzle and the diseases resulting from CGG-repeat expansion.
Vyšlo v časopise: Transcription-Associated R-Loop Formation across the Human CGG-Repeat Region. PLoS Genet 10(4): e32767. doi:10.1371/journal.pgen.1004294
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004294Souhrn
Expansion of a CGG-repeat element within the human FMR1 gene is responsible for multiple human diseases, including fragile X syndrome and fragile X-associated tremor/ataxia syndrome (FXTAS). These diseases occur in separate ranges of repeat length and are characterized by profoundly different molecular mechanisms. Fragile X syndrome results from FMR1 gene silencing, whereas FXTAS is associated with an increase in transcription and toxicity of the CGG-repeat-containing mRNA. This study introduces a previously unknown molecular feature of the FMR1 locus, namely the co-transcriptional formation of three-stranded R-loop structures upon re-annealing of the nascent FMR1 transcript to the template DNA strand. R-loops are involved in the normal function of human CpG island promoters in that they contribute to protecting these sequences from DNA methylation. However, excessive R-loop formation can lead to activation of the DNA damage response and result in genomic instability. We used antibody recognition and chemical single-stranded DNA footprinting to show that R-loops form at the FMR1 locus with increasing frequency and greater structural complexity as the CGG-repeat length increases. This discovery provides a missing piece of both the complex FMR1 molecular puzzle and the diseases resulting from CGG-repeat expansion.
Zdroje
1. HagermanP (2013) Fragile X-associated tremor/ataxia syndrome (FXTAS): pathology and mechanisms. Acta Neuropathol 126 : 1–19.
2. AmiriK, HagermanRJ, HagermanPJ (2008) Fragile X-associated tremor/ataxia syndrome: an aging face of the fragile X gene. Arch Neurol 65 : 19–25.
3. FuYH, KuhlDP, PizzutiA, PierettiM, SutcliffeJS, et al. (1991) Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell 67 : 1047–1058.
4. ChonchaiyaW, SchneiderA, HagermanRJ (2009) Fragile X: a family of disorders. Adv Pediatr 56 : 165–186.
5. OberleI, RousseauF, HeitzD, KretzC, DevysD, et al. (1991) Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome. Science 252 : 1097–1102.
6. EichlerEE, HoldenJJ, PopovichBW, ReissAL, SnowK, et al. (1994) Length of uninterrupted CGG repeats determines instability in the FMR1 gene. Nat Genet 8 : 88–94.
7. SullivanSD, WeltC, ShermanS (2011) FMR1 and the continuum of primary ovarian insufficiency. Semin Reprod Med 29 : 299–307.
8. RendaMM, VoigtRG, Babovic-VuksanovicD, HighsmithWE, VinsonSS, et al. (2012) Neurodevelopmental disabilities in children with intermediate and premutation range fragile X cytosine-guanine-guanine expansions. J Child Neurol 29 : 326–30.
9. HagermanR, AuJ, HagermanP (2011) FMR1 premutation and full mutation molecular mechanisms related to autism. J Neurodev Disord 3 : 211–224.
10. TassoneF, HagermanRJ, TaylorAK, GaneLW, GodfreyTE, et al. (2000) Elevated levels of FMR1 mRNA in carrier males: a new mechanism of involvement in the fragile-X syndrome. Am J Hum Genet 66 : 6–15.
11. Garcia-ArocenaD, HagermanPJ (2010) Advances in understanding the molecular basis of FXTAS. Hum Mol Genet 19: R83–89.
12. Ross-IntaC, Omanska-KlusekA, WongS, BarrowC, Garcia-ArocenaD, et al. (2010) Evidence of mitochondrial dysfunction in fragile X-associated tremor/ataxia syndrome. Biochem J 429 : 545–552.
13. SellierC, RauF, LiuY, TassoneF, HukemaRK, et al. (2010) Sam68 sequestration and partial loss of function are associated with splicing alterations in FXTAS patients. EMBO J 29 : 1248–1261.
14. SellierC, FreyermuthF, TabetR, TranT, HeF, et al. (2013) Sequestration of DROSHA and DGCR8 by expanded CGG RNA repeats alters microRNA processing in fragile X-associated tremor/ataxia syndrome. Cell Rep 3 : 869–880.
15. ToddPK, OhSY, KransA, HeF, SellierC, et al. (2013) CGG repeat-associated translation mediates neurodegeneration in fragile X tremor ataxia syndrome. Neuron 78 : 440–455.
16. RoyD, YuK, LieberMR (2008) Mechanism of R-loop formation at immunoglobulin class switch sequences. Mol Cell Biol 28 : 50–60.
17. MasukataH, TomizawaJ (1990) A mechanism of formation of a persistent hybrid between elongating RNA and template DNA. Cell 62 : 331–338.
18. GinnoPA, LottPL, ChristensenHC, KorfI, ChedinF (2012) R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol Cell 45 : 814–825.
19. GinnoPA, LimYW, LottPL, KorfI, ChedinF (2013) GC skew at the 5′ and 3′ ends of human genes links R-loop formation to epigenetic regulation and transcription termination. Genome Res 23 : 1590–1600.
20. ReddyK, TamM, BowaterRP, BarberM, TomlinsonM, et al. (2011) Determinants of R-loop formation at convergent bidirectionally transcribed trinucleotide repeats. Nucleic Acids Res 39 : 1749–1762.
21. Skourti-StathakiK, ProudfootNJ, GromakN (2011) Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol Cell 42 : 794–805.
22. McIvorEI, PolakU, NapieralaM (2010) New insights into repeat instability: role of RNA*DNA hybrids. RNA Biol 7 : 551–558.
23. AguileraA, Garcia-MuseT (2012) R loops: from transcription byproducts to threats to genome stability. Mol Cell 46 : 115–124.
24. HelmrichA, BallarinoM, NudlerE, ToraL (2013) Transcription-replication encounters, consequences and genomic instability. Nat Struct Mol Biol 20 : 412–418.
25. TsaiAG, LieberMR (2010) Mechanisms of chromosomal rearrangement in the human genome. BMC Genomics 11 Suppl 1: S1.
26. YuK, ChedinF, HsiehCL, WilsonTE, LieberMR (2003) R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat Immunol 4 : 442–451.
27. PaulsenRD, SoniDV, WollmanR, HahnAT, YeeMC, et al. (2009) A genome-wide siRNA screen reveals diverse cellular processes and pathways that mediate genome stability. Mol Cell 35 : 228–239.
28. SordetO, NakamuraAJ, RedonCE, PommierY (2010) DNA double-strand breaks and ATM activation by transcription-blocking DNA lesions. Cell Cycle 9 : 274–278.
29. PowellWT, CoulsonRL, GonzalesML, CraryFK, WongSS, et al. (2013) R-loop formation at Snord116 mediates topotecan inhibition of Ube3a-antisense and allele-specific chromatin decondensation. Proc Natl Acad Sci U S A 110 : 13938–13943.
30. RoyD, LieberMR (2009) G clustering is important for the initiation of transcription-induced R-loops in vitro, whereas high G density without clustering is sufficient thereafter. Mol Cell Biol 29 : 3124–3133.
31. TassoneF, De RubeisS, CarosiC, La FataG, SerpaG, et al. (2011) Differential usage of transcriptional start sites and polyadenylation sites in FMR1 premutation alleles. Nucleic Acids Res 39 : 6172–6185.
32. BeilinaA, TassoneF, SchwartzPH, SahotaP, HagermanPJ (2004) Redistribution of transcription start sites within the FMR1 promoter region with expansion of the downstream CGG-repeat element. Hum Mol Genet 13 : 543–549.
33. StrausbergRL, FeingoldEA, GrouseLH, DergeJG, KlausnerRD, et al. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci U S A 99 : 16899–16903.
34. Gardiner-GardenM, FrommerM (1987) CpG islands in vertebrate genomes. J Mol Biol 196 : 261–282.
35. BoguslawskiSJ, SmithDE, MichalakMA, MickelsonKE, YehleCO, et al. (1986) Characterization of monoclonal antibody to DNA.RNA and its application to immunodetection of hybrids. J Immunol Methods 89 : 123–130.
36. HoemG, RaskeCR, Garcia-ArocenaD, TassoneF, SanchezE, et al. (2011) CGG-repeat length threshold for FMR1 RNA pathogenesis in a cellular model for FXTAS. Hum Mol Genet 20 : 2161–2170.
37. LanderES, LintonLM, BirrenB, NusbaumC, ZodyMC, et al. (2001) Initial sequencing and analysis of the human genome. Nature 409 : 860–921.
38. CerritelliSM, CrouchRJ (2009) Ribonuclease H: the enzymes in eukaryotes. FEBS J 276 : 1494–1505.
39. ChenX, MariappanSV, CatastiP, RatliffR, MoyzisRK, et al. (1995) Hairpins are formed by the single DNA strands of the fragile X triplet repeats: structure and biological implications. Proc Natl Acad Sci U S A 92 : 5199–5203.
40. GacyAM, GoellnerG, JuranicN, MacuraS, McMurrayCT (1995) Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell 81 : 533–540.
41. HuangFT, YuK, HsiehCL, LieberMR (2006) Downstream boundary of chromosomal R-loops at murine switch regions: implications for the mechanism of class switch recombination. Proc Natl Acad Sci U S A 103 : 5030–5035.
42. SmithSS, LaayounA, LingemanRG, BakerDJ, RileyJ (1994) Hypermethylation of telomere-like foldbacks at codon 12 of the human c-Ha-ras gene and the trinucleotide repeat of the FMR-1 gene of fragile X. J Mol Biol 243 : 143–151.
43. NaumannA, HochsteinN, WeberS, FanningE, DoerflerW (2009) A distinct DNA-methylation boundary in the 5′-upstream sequence of the FMR1 promoter binds nuclear proteins and is lost in fragile X syndrome. Am J Hum Genet 85 : 606–616.
44. StogerR, GenereuxDP, HagermanRJ, HagermanPJ, TassoneF, et al. (2011) Testing the FMR1 promoter for mosaicism in DNA methylation among CpG sites, strands, and cells in FMR1-expressing males with fragile X syndrome. PLoS One 6: e23648.
45. HuertasP, AguileraA (2003) Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol Cell 12 : 711–721.
46. SordetO, RedonCE, Guirouilh-BarbatJ, SmithS, SolierS, et al. (2009) Ataxia telangiectasia mutated activation by transcription - and topoisomerase I-induced DNA double-strand breaks. EMBO Rep 10 : 887–893.
47. MischoHE, Gomez-GonzalezB, GrzechnikP, RondonAG, WeiW, et al. (2011) Yeast Sen1 helicase protects the genome from transcription-associated instability. Mol Cell 41 : 21–32.
48. HelmrichA, BallarinoM, ToraL (2011) Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. Mol Cell 44 : 966–977.
49. StirlingPC, ChanYA, MinakerSW, AristizabalMJ, BarrettI, et al. (2012) R-loop-mediated genome instability in mRNA cleavage and polyadenylation mutants. Genes Dev 26 : 163–175.
50. EntezamA, UsdinK (2008) ATR protects the genome against CGG.CCG-repeat expansion in Fragile X premutation mice. Nucleic Acids Res 36 : 1050–1056.
51. EntezamA, UsdinK (2009) ATM and ATR protect the genome against two different types of tandem repeat instability in Fragile X premutation mice. Nucleic Acids Res 37 : 6371–6377.
52. KumariD, SommaV, NakamuraAJ, BonnerWM, D'AmbrosioE, et al. (2009) The role of DNA damage response pathways in chromosome fragility in Fragile X syndrome. Nucleic Acids Res 37 : 4385–4392.
53. CuozzoC, PorcelliniA, AngrisanoT, MoranoA, LeeB, et al. (2007) DNA damage, homology-directed repair, and DNA methylation. PLoS Genet 3: e110.
54. Garcia-ArocenaD, YangJE, BrouwerJR, TassoneF, IwahashiC, et al. (2010) Fibroblast phenotype in male carriers of FMR1 premutation alleles. Hum Mol Genet 19 : 299–312.
55. SchmittgenTD, LivakKJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3 : 1101–1108.
56. SalutoA, BrussinoA, TassoneF, ArduinoC, CagnoliC, et al. (2005) An enhanced polymerase chain reaction assay to detect pre - and full mutation alleles of the fragile X mental retardation 1 gene. J Mol Diagn 7 : 605–612.
57. LarkinMA, BlackshieldsG, BrownNP, ChennaR, McGettiganPA, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23 : 2947–2948.
58. CerritelliSM, FrolovaEG, FengC, GrinbergA, LovePE, et al. (2003) Failure to produce mitochondrial DNA results in embryonic lethality in Rnaseh1 null mice. Mol Cell 11 : 807–815.
59. MoarefiAH, ChedinF (2011) ICF syndrome mutations cause a broad spectrum of biochemical defects in DNMT3B-mediated de novo DNA methylation. J Mol Biol 409 : 758–772.
60. ReijnsMA, BubeckD, GibsonLC, GrahamSC, BaillieGS, et al. (2011) The structure of the human RNase H2 complex defines key interaction interfaces relevant to enzyme function and human disease. J Biol Chem 286 : 10530–10539.
61. ZumwaltM, LudwigA, HagermanPJ, DieckmannT (2007) Secondary structure and dynamics of the r(CGG) repeat in the mRNA of the fragile X mental retardation 1 (FMR1) gene. RNA Biol 4 : 93–100.
Štítky
Genetika Reprodukčná medicína
Článok vyšiel v časopisePLOS Genetics
Najčítanejšie tento týždeň
2014 Číslo 4- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
-
Všetky články tohto čísla
- The Challenges of Mitochondrial Replacement
- Concocting Cholinergy
- Genome-Wide Diet-Gene Interaction Analyses for Risk of Colorectal Cancer
- Statistical Power to Detect Genetic (Co)Variance of Complex Traits Using SNP Data in Unrelated Samples
- Mouse Pulmonary Adenoma Susceptibility 1 Locus Is an Expression QTL Modulating -4A
- Transcription-Associated R-Loop Formation across the Human CGG-Repeat Region
- Epigenetic Regulation by Heritable RNA
- Protein Quantitative Trait Loci Identify Novel Candidates Modulating Cellular Response to Chemotherapy
- Genome-Wide Profiling of Yeast DNA:RNA Hybrid Prone Sites with DRIP-Chip
- The Mechanism of Gene Targeting in Human Somatic Cells
- A LINE-1 Insertion in DLX6 Is Responsible for Cleft Palate and Mandibular Abnormalities in a Canine Model of Pierre Robin Sequence
- Interaction between Two Timing MicroRNAs Controls Trichome Distribution in
- DNA Glycosylases Involved in Base Excision Repair May Be Associated with Cancer Risk in and Mutation Carriers
- The Myc-Mondo/Mad Complexes Integrate Diverse Longevity Signals
- Evolutionarily Diverged Regulation of X-chromosomal Genes as a Primal Event in Mouse Reproductive Isolation
- Mutations in Conserved Residues of the microRNA Argonaute ALG-1 Identify Separable Functions in ALG-1 miRISC Loading and Target Repression
- Genetic Predisposition to In Situ and Invasive Lobular Carcinoma of the Breast
- Isl1 Directly Controls a Cholinergic Neuronal Identity in the Developing Forebrain and Spinal Cord by Forming Cell Type-Specific Complexes
- A Synthetic Community Approach Reveals Plant Genotypes Affecting the Phyllosphere Microbiota
- The Sequence-Specific Transcription Factor c-Jun Targets Cockayne Syndrome Protein B to Regulate Transcription and Chromatin Structure
- Determining the Control Circuitry of Redox Metabolism at the Genome-Scale
- DNA Repair Pathway Selection Caused by Defects in , , and Telomere Addition Generates Specific Chromosomal Rearrangement Signatures
- Methylome Diversification through Changes in DNA Methyltransferase Sequence Specificity
- Folliculin Regulates Ampk-Dependent Autophagy and Metabolic Stress Survival
- Fine Mapping of Dominant -Linked Incompatibility Alleles in Hybrids
- Unexpected Role of the Steroid-Deficiency Protein Ecdysoneless in Pre-mRNA Splicing
- Three Groups of Transposable Elements with Contrasting Copy Number Dynamics and Host Responses in the Maize ( ssp. ) Genome
- Sox5 Functions as a Fate Switch in Medaka Pigment Cell Development
- Synergistic Interactions between the Molecular and Neuronal Circadian Networks Drive Robust Behavioral Circadian Rhythms in
- Chromatin Landscapes of Retroviral and Transposon Integration Profiles
- Widespread Use of Non-productive Alternative Splice Sites in
- Ras GTPase-Like Protein MglA, a Controller of Bacterial Social-Motility in Myxobacteria, Has Evolved to Control Bacterial Predation by
- Cell Type-Specific Functions of Genes Revealed by Novel Adipocyte and Hepatocyte Circadian Clock Models
- Phenotype Ontologies and Cross-Species Analysis for Translational Research
- Embryogenesis Scales Uniformly across Temperature in Developmentally Diverse Species
- In Pursuit of the Gene: An Interview with James Schwartz
- Molecular Mechanisms of Hypoxic Responses via Unique Roles of Ras1, Cdc24 and Ptp3 in a Human Fungal Pathogen
- Analysis of the Genome and Transcriptome of var. Reveals Complex RNA Expression and Microevolution Leading to Virulence Attenuation
- Genotypic and Functional Impact of HIV-1 Adaptation to Its Host Population during the North American Epidemic
- RNA Editome in Rhesus Macaque Shaped by Purifying Selection
- Proper Actin Ring Formation and Septum Constriction Requires Coordinated Regulation of SIN and MOR Pathways through the Germinal Centre Kinase MST-1
- Interplay of the Serine/Threonine-Kinase StkP and the Paralogs DivIVA and GpsB in Pneumococcal Cell Elongation and Division
- A Quality Control Mechanism Coordinates Meiotic Prophase Events to Promote Crossover Assurance
- CNNM2 Mutations Cause Impaired Brain Development and Seizures in Patients with Hypomagnesemia
- The RNA-Binding Protein QKI Suppresses Cancer-Associated Aberrant Splicing
- Uncoupling Transcription from Covalent Histone Modification
- Rad51–Rad52 Mediated Maintenance of Centromeric Chromatin in
- FRA2A Is a CGG Repeat Expansion Associated with Silencing of
- A General Approach for Haplotype Phasing across the Full Spectrum of Relatedness
- A Novel Highly Divergent Protein Family Identified from a Viviparous Insect by RNA-seq Analysis: A Potential Target for Tsetse Fly-Specific Abortifacients
- A Central Role for in Regulation of Islet Function in Man
- PLOS Genetics
- Archív čísel
- Aktuálne číslo
- Informácie o časopise
Najčítanejšie v tomto čísle- The Sequence-Specific Transcription Factor c-Jun Targets Cockayne Syndrome Protein B to Regulate Transcription and Chromatin Structure
- The Mechanism of Gene Targeting in Human Somatic Cells
- Genetic Predisposition to In Situ and Invasive Lobular Carcinoma of the Breast
- Widespread Use of Non-productive Alternative Splice Sites in
Prihlásenie#ADS_BOTTOM_SCRIPTS#Zabudnuté hesloZadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.
- Časopisy