-
Články
- Časopisy
- Kurzy
- Témy
- Kongresy
- Videa
- Podcasty
Three Groups of Transposable Elements with Contrasting Copy Number Dynamics and Host Responses in the Maize ( ssp. ) Genome
Because transposable elements (TEs) constitute most angiosperm nuclear DNA, the interaction between TEs and their host genome is a key component for understanding the function and evolution of plant genomes. The diversity of the host response has been studied a great deal, including the biogenesis of small interfering RNAs (siRNAs) that target TEs for epigenetic modifications. However, little is known about variation in TE content among closely related genomes and whether siRNA expression tracks this variation. To that end, we surveyed both the copy number and the siRNA targeting of more than 1500 distinct TE subfamilies in the B73 maize reference genome. These surveys indicated that TE subfamilies fall naturally into three distinctive groups based on their class and copy number, but these groups also differ with respect to their location in the genome, their age, their expression and their siRNA regulation. The presence and consistency of these TE groups was also assessed in two genetically distant maize landraces with contrasting genome sizes. The variation in siRNA targeting across different TE groups and families, as well as the lack of correlation between TE and siRNA abundances, argues for the existence of multiple mechanisms and strategies for TE silencing.
Vyšlo v časopise: Three Groups of Transposable Elements with Contrasting Copy Number Dynamics and Host Responses in the Maize ( ssp. ) Genome. PLoS Genet 10(4): e32767. doi:10.1371/journal.pgen.1004298
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004298Souhrn
Because transposable elements (TEs) constitute most angiosperm nuclear DNA, the interaction between TEs and their host genome is a key component for understanding the function and evolution of plant genomes. The diversity of the host response has been studied a great deal, including the biogenesis of small interfering RNAs (siRNAs) that target TEs for epigenetic modifications. However, little is known about variation in TE content among closely related genomes and whether siRNA expression tracks this variation. To that end, we surveyed both the copy number and the siRNA targeting of more than 1500 distinct TE subfamilies in the B73 maize reference genome. These surveys indicated that TE subfamilies fall naturally into three distinctive groups based on their class and copy number, but these groups also differ with respect to their location in the genome, their age, their expression and their siRNA regulation. The presence and consistency of these TE groups was also assessed in two genetically distant maize landraces with contrasting genome sizes. The variation in siRNA targeting across different TE groups and families, as well as the lack of correlation between TE and siRNA abundances, argues for the existence of multiple mechanisms and strategies for TE silencing.
Zdroje
1. TenaillonMI, HollisterJD, GautBS (2010) A triptych of the evolution of plant transposable elements. Trends Plant Sci 15 : 471–478.
2. LeonardoTE, NuzhdinSV (2002) Intracellular battlegrounds: conflict and cooperation between transposable elements. Genet Res 80 : 155–161.
3. LischD (2009) Epigenetic regulation of transposable elements in plants. Annu Rev Plant Biol 60 : 43–66.
4. LawJA, JacobsenSE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11 : 204–220.
5. AxtellMJ (2013) Classification and Comparison of Small RNAs from Plants. Annu Rev Plant Biol 64 : 137–159.
6. SlotkinRK, MartienssenR (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8 : 272–285.
7. NobutaK, LuC, ShrivastavaR, PillayM, De PaoliE, et al. (2008) Distinct size distribution of endogeneous siRNAs in maize: Evidence from deep sequencing in the mop1-1 mutant. Proc Natl Acad Sci U S A 105 : 14958–14963.
8. NuthikattuS, McCueAD, PandaK, FultzD, DeFraiaC, et al. (2013) The initiation of epigenetic silencing of active transposable elements is triggered by RDR6 and 21–22 nucleotide small interfering RNAs. Plant Physiol 162 : 116–131.
9. Mari-OrdonezA, MarchaisA, EtcheverryM, MartinA, ColotV, et al. (2013) Reconstructing de novo silencing of an active plant retrotransposon. Nat Genet 45 : 1029–1039.
10. PieguB, GuyotR, PicaultN, RoulinA, SaniyalA, et al. (2006) Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res 16 : 1262–1269.
11. HawkinsJS, KimH, NasonJD, WingRA, WendelJF (2006) Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res 16 : 1252–1261.
12. HuangCR, BurnsKH, BoekeJD (2012) Active transposition in genomes. Annu Rev Genet 46 : 651–675.
13. JiaY, LischDR, OhtsuK, ScanlonMJ, NettletonD, et al. (2009) Loss of RNA-dependent RNA polymerase 2 (RDR2) function causes widespread and unexpected changes in the expression of transposons, genes, and 24-nt small RNAs. PLoS Genet 5: e1000737.
14. BarberWT, ZhangW, WinH, VaralaKK, DorweilerJE, et al. (2012) Repeat associated small RNAs vary among parents and following hybridization in maize. Proc Natl Acad Sci U S A 109 : 10444–10449.
15. LuC, KulkarniK, SouretFF, MuthuValliappanR, TejSS, et al. (2006) MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant. Genome Res 16 : 1276–1288.
16. SchnablePS, WareD, FultonRS, SteinJC, WeiF, et al. (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326 : 1112–1115.
17. TenaillonMI, HuffordMB, GautBS, Ross-IbarraJ (2011) Genome Size and Transposable Element Content as Determined by High-Throughput Sequencing in Maize and Zea luxurians. Genome Biol Evol 3 : 219–229.
18. ChiaJM, SongC, BradburyPJ, CostichD, de LeonN, et al. (2012) Maize HapMap2 identifies extant variation from a genome in flux. Nat Genet 44 : 803–807.
19. FangZ, PyhajarviT, WeberAL, DaweRK, GlaubitzJC, et al. (2012) Megabase-scale inversion polymorphism in the wild ancestor of maize. Genetics 191 : 883–894.
20. DiezCM, GautBS, MecaE, ScheinvarE, Montes-HernandezS, et al. (2013) Genome size variation in wild and cultivated maize along altitudinal gradients. New Phytol 199 ((1)) 264–76.
21. MorganteM, De PaoliE, RadovicS (2007) Transposable elements and the plant pan-genomes. Curr Opin Plant Biol 10 : 149–155.
22. BaucomRS, EstillJC, ChaparroC, UpshawN, JogiA, et al. (2009) Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome. PLoS Genet 5: e1000732.
23. MeyersBC, TingeySV, MorganteM (2001) Abundance, Distribution, and Transcriptional Activity of Repetitive Elements in the Maize Genome. Genome Research 11 : 1660–1676.
24. SanMiguelP, GautBS, TikhonovA, NakajimaY, BennetzenJL (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20 : 43–45.
25. WickerT, SabotF, Hua-VanA, BennetzenJL, CapyP, et al. (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8 : 973–982.
26. ZhongX, HaleCJ, LawJA, JohnsonLM, FengS, et al. (2012) DDR complex facilitates global association of RNA polymerase V to promoters and evolutionarily young transposons. Nat Struct Mol Biol 19 : 870–875.
27. BousiosA, KourmpetisYA, PavlidisP, MingaE, TsaftarisA, et al. (2012) The turbulent life of Sirevirus retrotransposons and the evolution of the maize genome: more than ten thousand elements tell the story. Plant J 69 : 475–488.
28. SchmitzRJ, HeY, Valdes-LopezO, KhanSM, JoshiT, et al. (2013) Epigenome-wide inheritance of cytosine methylation variants in a recombinant inbred population. Genome Res 23 : 1663–1674.
29. LischD (2012) Regulation of transposable elements in maize. Curr Opin Plant Biol 15 : 511–516.
30. RegulskiM, LuZ, KendallJ, DonoghueMT, ReindersJ, et al. (2013) The maize methylome influences mRNA splice sites and reveals widespread paramutation-like switches guided by small RNA. Genome Res 23 : 1651–1662.
31. BullardJH, PurdomE, HansenKD, DudoitS (2010) Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 11 : 94.
32. Swanson-WagnerRA, EichtenSR, KumariS, TiffinP, SteinJC, et al. (2010) Pervasive gene content variation and copy number variation in maize and its undomesticated progenitor. Genome Res 20 : 1689–1699.
33. WangQ, DoonerHK (2006) Remarkable variation in maize genome structure inferred from haplotype diversity at the bz locus. Proc Natl Acad Sci U S A 103 : 17644–17649.
34. HollisterJD, GautBS (2009) Epigenetic silencing of transposable elements: A trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res 19 : 1419–1428.
35. MaJ, DevosKM, BennetzenJL (2004) Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 14 : 860–869.
36. TianZ, RizzonC, DuJ, ZhuL, BennetzenJ, et al. (2009) Do genetic recombination and gene density shape the pattern of DNA elimination in rice LTR-retrotransposons? Genome Res 19 : 2221–2230.
37. KatoM, MiuraA, BenderJ, JacobsenSE, KakutaniT (2003) Role of CG and non-CG methylation in immobilization of transposons in Arabidopsis. Curr Biol 13 : 421–426.
38. OhtsuK, SmithMB, EmrichSJ, BorsukLA, ZhouR, et al. (2007) Global gene expression analysis of the shoot apical meristem of maize (Zea mays L.). Plant J 52 : 391–404.
39. LiH, FreelingM, LischD (2010) Epigenetic reprogramming during vegetative phase change in maize. P Natl Acad Sci Usa 107 : 22184–22189.
40. WoodhouseMR, FreelingM, LischD (2006) Initiation, establishment, and maintenance of heritable MuDR transposon silencing in maize are mediated by distinct factors. PLoS Biol 4: e339.
41. VonholdtBM, TakunoS, GautBS (2012) Recent Retrotransposon Insertions Are Methylated and Phylogenetically Clustered in Japonica Rice (Oryza sativa spp. japonica). Mol Biol Evol 29 : 3193–3203.
42. HeG, ZhuX, EllingAA, ChenL, WangX, et al. (2010) Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell 22 : 17–33.
43. CalarcoJP, BorgesF, DonoghueMT, Van ExF, JullienPE, et al. (2012) Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 151 : 194–205.
44. HeG, ChenB, WangX, LiX, LiJ, et al. (2013) Conservation and divergence of transcriptomic and epigenomic variation in maize hybrids. Genome Biol 14: R57.
45. EichtenSR, VaughnMW, HermansonPJ, NMS (2012) Variation in DNA Methylation Patterns is More Common among Maize Inbreds than among Tissues. The Plant Genome doi:10.3835/plantgenome2012.06.0009
46. EichtenSR, EllisNA, MakarevitchI, YehCT, GentJI, et al. (2012) Spreading of heterochromatin is limited to specific families of maize retrotransposons. PLoS Genet 8: e1003127.
47. GautBS, DoebleyJF (1997) DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci U S A 94 : 6809–6814.
48. DoebleyJF, GautBS, SmithBD (2006) The molecular genetics of crop domestication. Cell 127 : 1309–1321.
49. LischD, BennetzenJL (2011) Transposable element origins of epigenetic gene regulation. Curr Opin Plant Biol 14 : 156–161.
50. EichtenSR, Swanson-WagnerRA, SchnableJC, WatersAJ, HermansonPJ, et al. (2011) Heritable epigenetic variation among maize inbreds. PLoS Genet 7: e1002372.
51. NingZM, CoxAJ, MullikinJC (2001) SSAHA: A fast search method for large DNA databases. Genome Res 11 : 1725–1729.
52. WeiF, SteinJC, LiangC, ZhangJ, FultonRS, et al. (2009) Detailed analysis of a contiguous 22-Mb region of the maize genome. PLoS Genet 5: e1000728.
53. Dawe RK (2010) Maize centromeres and knobs (neocentromeres). In: Bennetzen JF, Hake SC, editors. Handbook of Maize: Genetics and Genomics. New York: Springer Science+ Business Media. pp. 239–250.
54. BennetzenJL, ColemanC, LiuR, MaJ, RamakrishnaW (2004) Consistent over-estimation of gene number in complex plant genomes. Curr Opin Plant Biol 7 : 732–736.
55. MartinM (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet journal 17 : 10–12.
56. LiH, DurbinR (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26 : 589–595.
57. SekhonRS, BriskineR, HirschCN, MyersCL, SpringerNM, et al. (2013) Maize gene atlas developed by RNA sequencing and comparative evaluation of transcriptomes based on RNA sequencing and microarrays. PLoS One 8: e61005.
58. MortazaviA, WilliamsBA, McCueK, SchaefferL, WoldB (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5 : 621–628.
Štítky
Genetika Reprodukčná medicína
Článok vyšiel v časopisePLOS Genetics
Najčítanejšie tento týždeň
2014 Číslo 4- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
-
Všetky články tohto čísla
- The Challenges of Mitochondrial Replacement
- Concocting Cholinergy
- Genome-Wide Diet-Gene Interaction Analyses for Risk of Colorectal Cancer
- Statistical Power to Detect Genetic (Co)Variance of Complex Traits Using SNP Data in Unrelated Samples
- Mouse Pulmonary Adenoma Susceptibility 1 Locus Is an Expression QTL Modulating -4A
- Transcription-Associated R-Loop Formation across the Human CGG-Repeat Region
- Epigenetic Regulation by Heritable RNA
- Protein Quantitative Trait Loci Identify Novel Candidates Modulating Cellular Response to Chemotherapy
- Genome-Wide Profiling of Yeast DNA:RNA Hybrid Prone Sites with DRIP-Chip
- The Mechanism of Gene Targeting in Human Somatic Cells
- A LINE-1 Insertion in DLX6 Is Responsible for Cleft Palate and Mandibular Abnormalities in a Canine Model of Pierre Robin Sequence
- Interaction between Two Timing MicroRNAs Controls Trichome Distribution in
- DNA Glycosylases Involved in Base Excision Repair May Be Associated with Cancer Risk in and Mutation Carriers
- The Myc-Mondo/Mad Complexes Integrate Diverse Longevity Signals
- Evolutionarily Diverged Regulation of X-chromosomal Genes as a Primal Event in Mouse Reproductive Isolation
- Mutations in Conserved Residues of the microRNA Argonaute ALG-1 Identify Separable Functions in ALG-1 miRISC Loading and Target Repression
- Genetic Predisposition to In Situ and Invasive Lobular Carcinoma of the Breast
- Isl1 Directly Controls a Cholinergic Neuronal Identity in the Developing Forebrain and Spinal Cord by Forming Cell Type-Specific Complexes
- A Synthetic Community Approach Reveals Plant Genotypes Affecting the Phyllosphere Microbiota
- The Sequence-Specific Transcription Factor c-Jun Targets Cockayne Syndrome Protein B to Regulate Transcription and Chromatin Structure
- Determining the Control Circuitry of Redox Metabolism at the Genome-Scale
- DNA Repair Pathway Selection Caused by Defects in , , and Telomere Addition Generates Specific Chromosomal Rearrangement Signatures
- Methylome Diversification through Changes in DNA Methyltransferase Sequence Specificity
- Folliculin Regulates Ampk-Dependent Autophagy and Metabolic Stress Survival
- Fine Mapping of Dominant -Linked Incompatibility Alleles in Hybrids
- Unexpected Role of the Steroid-Deficiency Protein Ecdysoneless in Pre-mRNA Splicing
- Three Groups of Transposable Elements with Contrasting Copy Number Dynamics and Host Responses in the Maize ( ssp. ) Genome
- Sox5 Functions as a Fate Switch in Medaka Pigment Cell Development
- Synergistic Interactions between the Molecular and Neuronal Circadian Networks Drive Robust Behavioral Circadian Rhythms in
- Chromatin Landscapes of Retroviral and Transposon Integration Profiles
- Widespread Use of Non-productive Alternative Splice Sites in
- Ras GTPase-Like Protein MglA, a Controller of Bacterial Social-Motility in Myxobacteria, Has Evolved to Control Bacterial Predation by
- Cell Type-Specific Functions of Genes Revealed by Novel Adipocyte and Hepatocyte Circadian Clock Models
- Phenotype Ontologies and Cross-Species Analysis for Translational Research
- Embryogenesis Scales Uniformly across Temperature in Developmentally Diverse Species
- In Pursuit of the Gene: An Interview with James Schwartz
- Molecular Mechanisms of Hypoxic Responses via Unique Roles of Ras1, Cdc24 and Ptp3 in a Human Fungal Pathogen
- Analysis of the Genome and Transcriptome of var. Reveals Complex RNA Expression and Microevolution Leading to Virulence Attenuation
- Genotypic and Functional Impact of HIV-1 Adaptation to Its Host Population during the North American Epidemic
- RNA Editome in Rhesus Macaque Shaped by Purifying Selection
- Proper Actin Ring Formation and Septum Constriction Requires Coordinated Regulation of SIN and MOR Pathways through the Germinal Centre Kinase MST-1
- Interplay of the Serine/Threonine-Kinase StkP and the Paralogs DivIVA and GpsB in Pneumococcal Cell Elongation and Division
- A Quality Control Mechanism Coordinates Meiotic Prophase Events to Promote Crossover Assurance
- CNNM2 Mutations Cause Impaired Brain Development and Seizures in Patients with Hypomagnesemia
- The RNA-Binding Protein QKI Suppresses Cancer-Associated Aberrant Splicing
- Uncoupling Transcription from Covalent Histone Modification
- Rad51–Rad52 Mediated Maintenance of Centromeric Chromatin in
- FRA2A Is a CGG Repeat Expansion Associated with Silencing of
- A General Approach for Haplotype Phasing across the Full Spectrum of Relatedness
- A Novel Highly Divergent Protein Family Identified from a Viviparous Insect by RNA-seq Analysis: A Potential Target for Tsetse Fly-Specific Abortifacients
- A Central Role for in Regulation of Islet Function in Man
- PLOS Genetics
- Archív čísel
- Aktuálne číslo
- Informácie o časopise
Najčítanejšie v tomto čísle- The Sequence-Specific Transcription Factor c-Jun Targets Cockayne Syndrome Protein B to Regulate Transcription and Chromatin Structure
- The Mechanism of Gene Targeting in Human Somatic Cells
- Genetic Predisposition to In Situ and Invasive Lobular Carcinoma of the Breast
- Widespread Use of Non-productive Alternative Splice Sites in
Prihlásenie#ADS_BOTTOM_SCRIPTS#Zabudnuté hesloZadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.
- Časopisy