#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Min System and Nucleoid Occlusion Are Not Required for Identifying the Division Site in but Ensure Its Efficient Utilization


Precise temporal and spatial control of cell division is essential for progeny survival. The current general view is that precise positioning of the division site at midcell in rod-shaped bacteria is a result of the combined action of the Min system and nucleoid (chromosome) occlusion. Both systems prevent assembly of the cytokinetic Z ring at inappropriate places in the cell, restricting Z rings to the correct site at midcell. Here we show that in the bacterium Bacillus subtilis Z rings are positioned precisely at midcell in the complete absence of both these systems, revealing the existence of a mechanism independent of Min and nucleoid occlusion that identifies midcell in this organism. We further show that Z ring assembly at midcell is delayed in the absence of Min and Noc proteins, while at the same time FtsZ accumulates at other potential division sites. This suggests that a major role for Min and Noc is to ensure efficient utilization of the midcell division site by preventing Z ring assembly at potential division sites, including the cell poles. Our data lead us to propose a model in which spatial regulation of division in B. subtilis involves identification of the division site at midcell that requires Min and nucleoid occlusion to ensure efficient Z ring assembly there and only there, at the right time in the cell cycle.


Vyšlo v časopise: The Min System and Nucleoid Occlusion Are Not Required for Identifying the Division Site in but Ensure Its Efficient Utilization. PLoS Genet 8(3): e32767. doi:10.1371/journal.pgen.1002561
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002561

Souhrn

Precise temporal and spatial control of cell division is essential for progeny survival. The current general view is that precise positioning of the division site at midcell in rod-shaped bacteria is a result of the combined action of the Min system and nucleoid (chromosome) occlusion. Both systems prevent assembly of the cytokinetic Z ring at inappropriate places in the cell, restricting Z rings to the correct site at midcell. Here we show that in the bacterium Bacillus subtilis Z rings are positioned precisely at midcell in the complete absence of both these systems, revealing the existence of a mechanism independent of Min and nucleoid occlusion that identifies midcell in this organism. We further show that Z ring assembly at midcell is delayed in the absence of Min and Noc proteins, while at the same time FtsZ accumulates at other potential division sites. This suggests that a major role for Min and Noc is to ensure efficient utilization of the midcell division site by preventing Z ring assembly at potential division sites, including the cell poles. Our data lead us to propose a model in which spatial regulation of division in B. subtilis involves identification of the division site at midcell that requires Min and nucleoid occlusion to ensure efficient Z ring assembly there and only there, at the right time in the cell cycle.


Zdroje

1. HarryEMonahanLThompsonL 2006 Bacterial cell division: the mechanism and its precison. Int Rev Cytol 253 27 94

2. RothfieldLTaghbaloutAShihYL 2005 Spatial control of bacterial division-site placement. Nat Rev Microbiol 3 959 968

3. AdamsDWErringtonJ 2009 Bacterial cell division: assembly, maintenance and disassembly of the Z ring. Nat Rev Microbiol 7 642 653

4. de BoerPA 2010 Advances in understanding E. coli cell fission. Curr Opin Microbiol 13 730 737

5. MingoranceJRivasGVelezMGomez-PuertasPVicenteM 2010 Strong FtsZ is with the force: mechanisms to constrict bacteria. Trends Microbiol 18 348 356

6. EricksonHPAndersonDEOsawaM 2010 FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one. Microbiol Mol Biol Rev 74 504 528

7. RudnerDZLosickR 2010 Protein subcellular localization in bacteria. Cold Spring Harb Perspect Biol 2 a000307

8. MargolinW 2005 FtsZ and the division of prokaryotic cells and organelles. Nat Rev Mol Cell Biol 6 862 871

9. WoldringhCLMulderEHulsPGVischerN 1991 Toporegulation of bacterial division according to the nucleoid occlusion model. Res Microbiol 142 309 320

10. WoldringhCLMulderEValkenburgJAWientjesFBZaritskyA 1990 Role of the nucleoid in the toporegulation of division. Res Microbiol 141 39 49

11. SunQMargolinW 2001 Influence of the nucleoid on placement of FtsZ and MinE rings in Escherichia coli. J Bacteriol 183 1413 1422

12. SunQMargolinW 2004 Effects of perturbing nucleoid structure on nucleoid occlusion-mediated toporegulation of FtsZ ring assembly. J Bacteriol 186 3951 3959

13. YuXCMargolinW 1999 FtsZ ring clusters in min and partition mutants: role of both the Min system and the nucleoid in regulating FtsZ ring localization. Mol Microbiol 32 315 326

14. YuXCSunQMargolinW 2001 FtsZ rings in mukB mutants with or without the Min system. Biochimie 83 125 129

15. de BoerPACrossleyRERothfieldLI 1988 Isolation and properties of minB, a complex genetic locus involved in correct placement of the division site in Escherichia coli. J Bacteriol 170 2106 2112

16. de BoerPACrossleyRERothfieldLI 1992 Roles of MinC and MinD in the site-specific septation block mediated by the MinCDE system of Escherichia coli. J Bacteriol 174 63 70

17. LevinPAMargolisPSSetlowPLosickRSunD 1992 Identification of Bacillus subtilis genes for septum placement and shape determination. J Bacteriol 174 6717 6728

18. VarleyAWStewartGC 1992 The divIVB region of the Bacillus subtilis chromosome encodes homologs of Escherichia coli septum placement (minCD) and cell shape (mreBCD) determinants. J Bacteriol 174 6729 6742

19. LeeSPriceCW 1993 The minCD locus of Bacillus subtilis lacks the minE determinant that provides topological specificity to cell division. Mol Microbiol 7 601 610

20. BramkampMEmminsRWestonLDonovanCDanielRA 2008 A novel component of the division-site selection system of Bacillus subtilis and a new mode of action for the division inhibitor MinCD. Mol Microbiol 70 1556 1569

21. PatrickJEKearnsDB 2008 MinJ (YvjD) is a topological determinant of cell division in Bacillus subtilis. Mol Microbiol 70 1166 1179

22. HuZMukherjeeAPichoffSLutkenhausJ 1999 The MinC component of the division site selection system in Escherichia coli interacts with FtsZ to prevent polymerization. Proc Natl Acad Sci U S A 96 14819 14824

23. HuZLutkenhausJ 2000 Analysis of MinC reveals two independent domains involved in interaction with MinD and FtsZ. J Bacteriol 182 3965 3971

24. ScheffersDJ 2008 The effect of MinC on FtsZ polymerization is pH dependent and can be counteracted by ZapA. FEBS Lett 582 2601 2608

25. DajkovicALanGSunSXWirtzDLutkenhausJ 2008 MinC spatially controls bacterial cytokinesis by antagonizing the scaffolding function of FtsZ. Curr Biol 18 235 244

26. HuZLutkenhausJ 1999 Topological regulation of cell division in Escherichia coli involves rapid pole to pole oscillation of the division inhibitor MinC under the control of MinD and MinE. Mol Microbiol 34 82 90

27. ThanedarSMargolinW 2004 FtsZ exhibits rapid movement and oscillation waves in helix-like patterns in Escherichia coli. Curr Biol 14 1167 1173

28. GregoryJABeckerECPoglianoK 2008 Bacillus subtilis MinC destabilizes FtsZ-rings at new cell poles and contributes to the timing of cell division. Genes Dev 22 3475 3488

29. WuLJErringtonJ 2004 Coordination of cell division and chromosome segregation by a nucleoid occlusion protein in Bacillus subtilis. Cell 117 915 925

30. BernhardtTGde BoerPA 2005 SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over Chromosomes in E. coli. Mol Cell 18 555 564

31. WuLJErringtonJ 2012 Nucleoid occlusion and bacterial cell division. Nat Rev Micro 10 8 12

32. ChoHMcManusHRDoveSLBernhardtTG 2011 Nucleoid occlusion factor SlmA is a DNA-activated FtsZ polymerization antagonist. Proc Natl Acad Sci U S A 108 3773 3778

33. TonthatNKAroldSTPickeringBFVan DykeMWLiangS 2011 Molecular mechanism by which the nucleoid occlusion factor, SlmA, keeps cytokinesis in check. EMBO J 30 154 164

34. WuLJIshikawaSKawaiYOshimaTOgasawaraN 2009 Noc protein binds to specific DNA sequences to coordinate cell division with chromosome segregation. EMBO J 28 1940 1952

35. MigockiMDFreemanMKWakeRGHarryEJ 2002 The Min system is not required for precise placement of the midcell Z ring in Bacillus subtilis. EMBO Rep 3 1163 1167

36. HarryEJRodwellJWakeRG 1999 Co-ordinating DNA replication with cell division in bacteria: a link between the early stages of a round of replication and mid-cell Z ring assembly. Mol Microbiol 33 33 40

37. RegameyAHarryEJWakeRG 2000 Mid-cell Z ring assembly in the absence of entry into the elongation phase of the round of replication in bacteria: co-ordinating chromosome replication with cell division. Mol Microbiol 38 423 434

38. MoriyaSRashidRARodriguesCDHarryEJ 2010 Influence of the nucleoid and the early stages of DNA replication on positioning the division site in Bacillus subtilis. Mol Microbiol 76 634 647

39. VeigaHJorgeAMPinhoMG 2011 Absence of nucleoid occlusion effector Noc impairs formation of orthogonal FtsZ rings during Staphylococcus aureus cell division. Mol Microbiol 80 1366 1380

40. WillemseJBorstJWde WaalEBisselingTvan WezelGP 2011 Positive control of cell division: FtsZ is recruited by SsgB during sporulation of Streptomyces. Genes Dev 25 89 99

41. CallisterHMcGinnessTWakeRG 1983 Timing and other features of the action of the ts1 division initiation gene product of Bacillus subtilis. J Bacteriol 154 537 546

42. PetersPCMigockiMDThoniCHarryEJ 2007 A new assembly pathway for the cytokinetic Z ring from a dynamic helical structure in vegetatively growing cells of Bacillus subtilis. Mol Microbiol 64 487 499

43. MonahanLGRobinsonAHarryEJ 2009 Lateral FtsZ association and the assembly of the cytokinetic Z ring in bacteria. Mol Microbiol 74 1004 1017

44. WeartRBLevinPA 2003 Growth rate-dependent regulation of medial FtsZ ring formation. J Bacteriol 185 2826 2834

45. BernardRMarquisKARudnerDZ 2010 Nucleoid occlusion prevents cell division during replication fork arrest in Bacillus subtilis. Mol Microbiol 78 866 882

46. HoshinoTMcKenzieTSchmidtSTanakaTSueokaN 1987 Nucleotide sequence of Bacillus subtilis dnaB: a gene essential for DNA replication initiation and membrane attachment. Proc Natl Acad Sci U S A 84 653 657

47. ArwertFRutbergL 1974 Induction of prophage SPO2 in Bacillus subtilis: prophage excision in the absence of bacterial or bacteriophage DNA synthesis. J Virol 14 1476 1481

48. KawaiYMoriyaSOgasawaraN 2003 Identification of a protein, YneA, responsible for cell division suppression during the SOS response in Bacillus subtilis. Mol Microbiol 47 1113 1122

49. MoAHBurkholderWF 2010 YneA, an SOS-induced inhibitor of cell division in Bacillus subtilis, is regulated posttranslationally and requires the transmembrane region for activity. J Bacteriol 192 3159 3173

50. GoranovAIKatzLBreierAMBurgeCBGrossmanAD 2005 A transcriptional response to replication status mediated by the conserved bacterial replication protein DnaA. Proc Natl Acad Sci U S A 102 12932 12937

51. CallisterHWakeRG 1977 Completion of the replication and division cycle in temperature-sensitive DNA initiation mutants of Bacillus subtilis 168 at the non-permissive temperature. J Mol Biol 117 71 84

52. WuLJFranksAHWakeRG 1995 Replication through the terminus region of the Bacillus subtilis chromosome is not essential for the formation of a division septum that partitions the DNA. J Bacteriol 177 5711 5715

53. BarákIWilkinsonAJ 2007 Division site recognition in Escherichia coli and Bacillus subtilis. FEMS Microbiology Reviews 31 311 326

54. LevinPAShimJJGrossmanAD 1998 Effect of minCD on FtsZ ring position and polar septation in Bacillus subtilis. J Bacteriol 180 6048 6051

55. HarryEJ 2001 Bacterial cell division: regulating Z-ring formation. Mol Microbiol 40 795 803

56. MargolinW 2000 Themes and variations in prokaryotic cell division. FEMS Microbiol Rev 24 531 548

57. SherrattDJ 2003 Bacterial chromosome dynamics. Science 301 780 785

58. AddinallSGHollandB 2002 The tubulin ancestor, FtsZ, draughtsman, designer and driving force for bacterial cytokinesis. J Mol Biol 318 219 236

59. MileykovskayaEDowhanW 2005 Role of membrane lipids in bacterial division-site selection. Curr Opin Microbiol 8 135 142

60. HuangKCMukhopadhyayRWingreenNS 2006 A curvature-mediated mechanism for localization of lipids to bacterial poles. PLoS Comput Biol 2 e151 doi:10.1371/journal.pcbi.0020151

61. MatsumotoKKusakaJNishiboriAHaraH 2006 Lipid domains in bacterial membranes. Mol Microbiol 61 1110 1117

62. van BaarleSBramkampM 2010 The MinCDJ system in Bacillus subtilis prevents minicell formation by promoting divisome disassembly. PLoS ONE 5 e9850 doi:10.1371/journal.pone.0009850

63. MigockiMDLewisPJWakeRGHarryEJ 2004 The midcell replication factory in Bacillus subtilis is highly mobile: implications for coordinating chromosome replication with other cell cycle events. Mol Microbiol 54 452 463

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2012 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#