#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Diverse Forms of Splicing Are Part of an Evolving Autoregulatory Circuit


Ribosomal proteins are essential to life. While the functions of ribosomal protein-encoding genes (RPGs) are highly conserved, the evolution of their regulatory mechanisms is remarkably dynamic. In Saccharomyces cerevisiae, RPGs are unusual in that they are commonly present as two highly similar gene copies and in that they are over-represented among intron-containing genes. To investigate the role of introns in the regulation of RPG expression, we constructed 16 S. cerevisiae strains with precise deletions of RPG introns. We found that several yeast introns function to repress rather than to increase steady-state mRNA levels. Among these, the RPS9A and RPS9B introns were required for cross-regulation of the two paralogous gene copies, which is consistent with the duplication of an autoregulatory circuit. To test for similar intron function in animals, we performed an experimental test and comparative analyses for autoregulation among distantly related animal RPS9 orthologs. Overexpression of an exogenous RpS9 copy in Drosophila melanogaster S2 cells induced alternative splicing and degradation of the endogenous copy by nonsense-mediated decay (NMD). Also, analysis of expressed sequence tag data from distantly related animals, including Homo sapiens and Ciona intestinalis, revealed diverse alternatively-spliced RPS9 isoforms predicted to elicit NMD. We propose that multiple forms of splicing regulation among RPS9 orthologs from various eukaryotes operate analogously to translational repression of the alpha operon by S4, the distant prokaryotic ortholog. Thus, RPS9 orthologs appear to have independently evolved variations on a fundamental autoregulatory circuit.


Vyšlo v časopise: Diverse Forms of Splicing Are Part of an Evolving Autoregulatory Circuit. PLoS Genet 8(3): e32767. doi:10.1371/journal.pgen.1002620
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002620

Souhrn

Ribosomal proteins are essential to life. While the functions of ribosomal protein-encoding genes (RPGs) are highly conserved, the evolution of their regulatory mechanisms is remarkably dynamic. In Saccharomyces cerevisiae, RPGs are unusual in that they are commonly present as two highly similar gene copies and in that they are over-represented among intron-containing genes. To investigate the role of introns in the regulation of RPG expression, we constructed 16 S. cerevisiae strains with precise deletions of RPG introns. We found that several yeast introns function to repress rather than to increase steady-state mRNA levels. Among these, the RPS9A and RPS9B introns were required for cross-regulation of the two paralogous gene copies, which is consistent with the duplication of an autoregulatory circuit. To test for similar intron function in animals, we performed an experimental test and comparative analyses for autoregulation among distantly related animal RPS9 orthologs. Overexpression of an exogenous RpS9 copy in Drosophila melanogaster S2 cells induced alternative splicing and degradation of the endogenous copy by nonsense-mediated decay (NMD). Also, analysis of expressed sequence tag data from distantly related animals, including Homo sapiens and Ciona intestinalis, revealed diverse alternatively-spliced RPS9 isoforms predicted to elicit NMD. We propose that multiple forms of splicing regulation among RPS9 orthologs from various eukaryotes operate analogously to translational repression of the alpha operon by S4, the distant prokaryotic ortholog. Thus, RPS9 orthologs appear to have independently evolved variations on a fundamental autoregulatory circuit.


Zdroje

1. BonECasaregolaSBlandinGLlorenteBNeuvégliseC 2003 Molecular evolution of eukaryotic genomes: hemiascomycetous yeast spliceosomal introns. Nucleic Acids Res 31 1121 1135

2. MitrovichQMTuchBBGuthrieCJohnsonAD 2007 Computational and experimental approaches double the number of known introns in the pathogenic yeast Candida albicans. Genome Res 17 492 502

3. WarnerJR 1999 The economics of ribosome biosynthesis in yeast. Trends Biochem Sci 24 437 440

4. JuneauKMirandaMHillenmeyerMENislowCDavisRW 2006 Introns regulate RNA and protein abundance in yeast. Genetics 174 511 518

5. PleissJAWhitworthGBBergkesselMGuthrieC 2007 Rapid, transcript-specific changes in splicing in response to environmental stress. Mol Cell 27 928 937

6. DabevaMDWarnerJR 1993 Ribosomal protein L32 of Saccharomyces cerevisiae regulates both splicing and translation of its own transcript. J Biol Chem 268 19669 19674

7. FewellSWWoolfordJLJr 1999 Ribosomal protein S14 of Saccharomyces cerevisiae regulates its expression by binding to RPS14B pre-mRNA and to 18S rRNA. Mol Cell Biol 19 826 834

8. DeanDNomuraM 1980 Feedback regulation of ribosomal protein gene expression in Escherichia coli. Proc Natl Acad Sci USA 77 3590 3594

9. NomuraMGourseRBaughmanG 1984 Regulation of the synthesis of ribosomes and ribosomal components. Annu Rev Biochem 53 75 117

10. HedgesSBDudleyJKumarS 2006 TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics 22 2971 2972

11. WolfeKHShieldsDC 1997 Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387 708 713

12. JuneauKPalmCMirandaMDavisRW 2007 High-density yeast-tiling array reveals previously undiscovered introns and extensive regulation of meiotic splicing. Proc Natl Acad Sci USA 104 1522 1527

13. ZhangZHesselberthJRFieldsS 2007 Genome-wide identification of spliced introns using a tiling microarray. Genome Res 17 503 509

14. ByrneKPWolfeKH 2005 The Yeast Gene Order Browser: combining curated homology and syntenic context reveals gene fate in polyploid species. Genome Res 15 1456 1461

15. StajichJEDietrichFSRoySW 2007 Comparative genomic analysis of fungal genomes reveals intron-rich ancestors. Genome Biol 8 R223

16. PleissJAWhitworthGBBergkesselMGuthrieC 2007 Transcript specificity in yeast pre-mRNA splicing revealed by mutations in core spliceosomal components. PLoS Biol 5 e90 doi:10.1371/journal.pbio.0050090

17. LiZPaulovichAGWoolfordJLJr 1995 Feedback inhibition of the yeast ribosomal protein gene CRY2 is mediated by the nucleotide sequence and secondary structure of CRY2 pre-mRNA. Mol Cell Biol 15 6454 6464

18. ClarkTASugnetCWAresMJr 2002 Genomewide analysis of mRNA processing in yeast using splicing-specific microarrays. Science 296 907 910

19. NagalakshmiUWangZWaernKShouCRahaD 2008 The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320 1344 1349

20. MitrovichQMAndersonP 2000 Unproductively spliced ribosomal protein mRNAs are natural targets of mRNA surveillance in C. elegans. Genes Dev 14 2173 2184

21. CuccureseMRussoGRussoAPietropaoloC 2005 Alternative splicing and nonsense-mediated mRNA decay regulate mammalian ribosomal gene expression. Nucleic Acids Res 33 5965 5977

22. IvanovAVMalyginAAKarpovaGG 2005 Human ribosomal protein S26 suppresses the splicing of its pre-mRNA. Biochim Biophys Acta 1727 134 140

23. MalyginAAParakhnevitchNMIvanovAVEperonICKarpovaGG 2007 Human ribosomal protein S13 regulates expression of its own gene at the splicing step by a feedback mechanism. Nucleic Acids Res 35 6414 6423

24. LareauLFBrooksANSoergelDAWMengQBrennerSE 2007 The coupling of alternative splicing and nonsense-mediated mRNA decay. Adv Exp Med Biol 623 190 211

25. HansenKDLareauLFBlanchetteMGreenREMengQ 2009 Genome-wide identification of alternative splice forms down-regulated by nonsense-mediated mRNA decay in Drosophila. PLoS Genet 5 e1000525 doi:10.1371/journal.pgen.1000525

26. WashietlSHofackerILStadlerPF 2005 Fast and reliable prediction of noncoding RNAs. Proc Natl Acad Sci USA 102 2454 2459

27. KentWJSugnetCWFureyTSRoskinKMPringleTH 2002 The human genome browser at UCSC. Genome Res 12 996 1006

28. JeffaresDCMourierTPennyD 2006 The biology of intron gain and loss. Trends Genet 22 16 22

29. AresMJrGrateLPaulingMH 1999 A handful of intron-containing genes produces the lion's share of yeast mRNA. RNA 5 1138 1139

30. SpingolaMGrateLHausslerDAresM 1999 Genome-wide bioinformatic and molecular analysis of introns in Saccharomyces cerevisiae. RNA 5 221 234

31. KatinkaMDDupratSCornillotEMéténierGThomaratF 2001 Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414 450 453

32. LeeRCHGillEERoySWFastNM 2010 Constrained intron structures in a microsporidian. Mol Biol Evol 27 1979 1982

33. DouglasSZaunerSFraunholzMBeatonMPennyS 2001 The highly reduced genome of an enslaved algal nucleus. Nature 410 1091 1096

34. FinkGR 1987 Pseudogenes in yeast? Cell 49 5 6

35. NilsenTWGraveleyBR 2010 Expansion of the eukaryotic proteome by alternative splicing. Nature 463 457 463

36. GrundSEFischerTCabalGGAntúnezOPérez-OrtínJE 2008 The inner nuclear membrane protein Src1 associates with subtelomeric genes and alters their regulated gene expression. J Cell Biol 182 897 910

37. JuneauKNislowCDavisRW 2009 Alternative splicing of PTC7 in Saccharomyces cerevisiae determines protein localization. Genetics 183 185 194

38. BrinsterRLAllenJMBehringerRRGelinasREPalmiterRD 1988 Introns increase transcriptional efficiency in transgenic mice. Proc Natl Acad Sci USA 85 836 840

39. MattoxWRynerLBakerBS 1992 Autoregulation and multifunctionality among trans-acting factors that regulate alternative pre-mRNA processing. J Biol Chem 267 19023 19026

40. LareauLFInadaMGreenREWengrodJCBrennerSE 2007 Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements. Nature 446 926 929

41. NiJZGrateLDonohueJPPrestonCNobidaN 2007 Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay. Genes Dev 21 708 718

42. SaltzmanALKimYKPanQFagnaniMMMaquatLE 2008 Regulation of multiple core spliceosomal proteins by alternative splicing-coupled nonsense-mediated mRNA decay. Mol Cell Biol 28 4320 4330

43. TangCKDraperDE 1989 Unusual mRNA pseudoknot structure is recognized by a protein translational repressor. Cell 57 531 536

44. SanoKTaguchiAFurumotoHUdaTItohT 1999 Cloning, sequencing, and characterization of ribosomal protein and RNA polymerase genes from the region analogous to the alpha-operon of escherichia coli in halophilic archaea, halobacterium halobium. Biochem Biophys Res Commun 264 24 28

45. Von HippelPHKowalczykowskiSCLonbergNNewportJWPaulLS 1982 Autoregulation of gene expression. Quantitative evaluation of the expression and function of the bacteriophage T4 gene 32 (single-stranded DNA binding) protein system. J Mol Biol 162 795 818

46. RossbachOHungL-HSchreinerSGrishinaIHeinerM 2009 Auto- and Cross-Regulation of the hnRNP L Proteins by Alternative Splicing. Mol Cell Biol 29 1442 1451

47. SpellmanRLlorianMSmithCWJ 2007 Crossregulation and functional redundancy between the splicing regulator PTB and its paralogs nPTB and ROD1. Mol Cell 27 420 434

48. KomiliSFarnyNGRothFPSilverPA 2007 Functional specificity among ribosomal proteins regulates gene expression. Cell 131 557 571

49. PnueliLAravaY 2007 Genome-wide polysomal analysis of a yeast strain with mutated ribosomal protein S9. BMC Genomics 8 285

50. GrundyFJHenkinTM 1991 The rpsD gene, encoding ribosomal protein S4, is autogenously regulated in Bacillus subtilis. J Bacteriol 173 4595 4602

51. ShubinNTabinCCarrollS 2009 Deep homology and the origins of evolutionary novelty. Nature 457 818 823

52. ParenteauJDurandMVéronneauSLacombeA-AMorinG 2008 Deletion of many yeast introns reveals a minority of genes that require splicing for function. Mol Biol Cell 19 1932 1941

53. StoriciFDurhamCLGordeninDAResnickMA 2003 Chromosomal site-specific double-strand breaks are efficiently targeted for repair by oligonucleotides in yeast. Proc Natl Acad Sci USA 100 14994 14999

54. RogersSLRogersGC 2008 Culture of Drosophila S2 cells and their use for RNAi-mediated loss-of-function studies and immunofluorescence microscopy. Nat Protoc 3 606 611

55. GentlemanRCCareyVJBatesDMBolstadBDettlingM 2004 Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5 R80

56. LemoineSCombesFServantNLe CromS 2006 Goulphar: rapid access and expertise for standard two-color microarray normalization methods. BMC Bioinformatics 7 467

57. RozenSSkaletskyH 2000 Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132 365 386

58. CherryJMBallCWengSJuvikGSchmidtR 1997 Genetic and physical maps of Saccharomyces cerevisiae. Nature 387 67 73

59. AdamsMDCelnikerSEHoltRAEvansCAGocayneJD 2000 The genome sequence of Drosophila melanogaster. Science 287 2185 2195

60. WickhamH 2009 ggplot2: Elegant Graphics for Data Analysis Springer New York

61. BensonDAKarsch-MizrachiILipmanDJOstellJSayersEW 2011 GenBank. Nucleic Acids Res 39 D32 37

62. R Development Core Team 2011 Development Core Team, R: A language and environment for statistical computing Vienna, Austria R Foundation for Statistical Computing

63. HedtkeSMTownsendTMHillisDM 2006 Resolution of phylogenetic conflict in large data sets by increased taxon sampling. Syst Biol 55 522 529

64. SatoKKatoYHamadaMAkutsuTAsaiK 2011 IPknot: fast and accurate prediction of RNA secondary structures with pseudoknots using integer programming. Bioinformatics 27 i85 93

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2012 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#