#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Age-Dependent Brain Gene Expression and Copy Number Anomalies in Autism Suggest Distinct Pathological Processes at Young Versus Mature Ages


Autism is a highly heritable neurodevelopmental disorder, yet the genetic underpinnings of the disorder are largely unknown. Aberrant brain overgrowth is a well-replicated observation in the autism literature; but association, linkage, and expression studies have not identified genetic factors that explain this trajectory. Few studies have had sufficient statistical power to investigate whole-genome gene expression and genotypic variation in the autistic brain, especially in regions that display the greatest growth abnormality. Previous functional genomic studies have identified possible alterations in transcript levels of genes related to neurodevelopment and immune function. Thus, there is a need for genetic studies involving key brain regions to replicate these findings and solidify the role of particular functional pathways in autism pathogenesis. We therefore sought to identify abnormal brain gene expression patterns via whole-genome analysis of mRNA levels and copy number variations (CNVs) in autistic and control postmortem brain samples. We focused on prefrontal cortex tissue where excess neuron numbers and cortical overgrowth are pronounced in the majority of autism cases. We found evidence for dysregulation in pathways governing cell number, cortical patterning, and differentiation in young autistic prefrontal cortex. In contrast, adult autistic prefrontal cortex showed dysregulation of signaling and repair pathways. Genes regulating cell cycle also exhibited autism-specific CNVs in DNA derived from prefrontal cortex, and these genes were significantly associated with autism in genome-wide association study datasets. Our results suggest that CNVs and age-dependent gene expression changes in autism may reflect distinct pathological processes in the developing versus the mature autistic prefrontal cortex. Our results raise the hypothesis that genetic dysregulation in the developing brain leads to abnormal regional patterning, excess prefrontal neurons, cortical overgrowth, and neural dysfunction in autism.


Vyšlo v časopise: Age-Dependent Brain Gene Expression and Copy Number Anomalies in Autism Suggest Distinct Pathological Processes at Young Versus Mature Ages. PLoS Genet 8(3): e32767. doi:10.1371/journal.pgen.1002592
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002592

Souhrn

Autism is a highly heritable neurodevelopmental disorder, yet the genetic underpinnings of the disorder are largely unknown. Aberrant brain overgrowth is a well-replicated observation in the autism literature; but association, linkage, and expression studies have not identified genetic factors that explain this trajectory. Few studies have had sufficient statistical power to investigate whole-genome gene expression and genotypic variation in the autistic brain, especially in regions that display the greatest growth abnormality. Previous functional genomic studies have identified possible alterations in transcript levels of genes related to neurodevelopment and immune function. Thus, there is a need for genetic studies involving key brain regions to replicate these findings and solidify the role of particular functional pathways in autism pathogenesis. We therefore sought to identify abnormal brain gene expression patterns via whole-genome analysis of mRNA levels and copy number variations (CNVs) in autistic and control postmortem brain samples. We focused on prefrontal cortex tissue where excess neuron numbers and cortical overgrowth are pronounced in the majority of autism cases. We found evidence for dysregulation in pathways governing cell number, cortical patterning, and differentiation in young autistic prefrontal cortex. In contrast, adult autistic prefrontal cortex showed dysregulation of signaling and repair pathways. Genes regulating cell cycle also exhibited autism-specific CNVs in DNA derived from prefrontal cortex, and these genes were significantly associated with autism in genome-wide association study datasets. Our results suggest that CNVs and age-dependent gene expression changes in autism may reflect distinct pathological processes in the developing versus the mature autistic prefrontal cortex. Our results raise the hypothesis that genetic dysregulation in the developing brain leads to abnormal regional patterning, excess prefrontal neurons, cortical overgrowth, and neural dysfunction in autism.


Zdroje

1. OzonoffSHeungKByrdRHansenRHertz-PicciottoI 2008 The onset of autism: patterns of symptom emergence in the first years of life. Autism research: official journal of the International Society for Autism Research 1 320 328

2. CourchesneEKarnsCMDavisHRZiccardiRCarperRA 2001 Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology 57 245 254

3. CarperRAMosesPTigueZDCourchesneE 2002 Cerebral lobes in autism: early hyperplasia and abnormal age effects. NeuroImage 16 1038 1051

4. SparksBFFriedmanSDShawDWAylwardEHEchelardD 2002 Brain structural abnormalities in young children with autism spectrum disorder. Neurology 59 184 192

5. SchumannCMHamstraJGoodlin-JonesBLLotspeichLJKwonH 2004 The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages. The Journal of neuroscience : the official journal of the Society for Neuroscience 24 6392 6401

6. CarperRACourchesneE 2005 Localized enlargement of the frontal cortex in early autism. Biological psychiatry 57 126 133

7. HazlettHCPoeMGerigGSmithRGProvenzaleJ 2005 Magnetic resonance imaging and head circumference study of brain size in autism: birth through age 2 years. Archives of general psychiatry 62 1366 1376

8. RedcayECourchesneE 2005 When is the brain enlarged in autism? A meta-analysis of all brain size reports. Biological psychiatry 58 1 9

9. MunsonJDawsonGAbbottRFajaSWebbSJ 2006 Amygdalar volume and behavioral development in autism. Archives of general psychiatry 63 686 693

10. SchumannCMBarnesCCLordCCourchesneE 2009 Amygdala enlargement in toddlers with autism related to severity of social and communication impairments. Biological psychiatry 66 942 949

11. SchumannCMBlossCSBarnesCCWidemanGMCarperRA 2010 Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism. The Journal of neuroscience : the official journal of the Society for Neuroscience 30 4419 4427

12. HazlettHCPoeMDGerigGStynerMChappellC 2011 Early brain overgrowth in autism associated with an increase in cortical surface area before age 2 years. Arch Gen Psychiatry 68 467 476

13. CourchesneECampbellKSolsoS 2011 Brain growth across the life span in autism: age-specific changes in anatomical pathology. Brain Res 1380 138 145

14. RedcayECourchesneE 2008 Deviant functional magnetic resonance imaging patterns of brain activity to speech in 2–3-year-old children with autism spectrum disorder. Biological psychiatry 64 589 598

15. EylerLPierceK*CourchesneE* in press A Failure of Left Temporal Cortex to Specialize for Language is an Early Emerging and Fundamental Property of Autism. Brain

16. PierceKEylerL 2011 Structural and Functional Brain Development in ASD: The Impact of Early Brain Overgrowth and Considerations for Treatment. FeinD The Neuropsychology of Autism New York, NY Oxford University Press 407 450

17. CourchesneEMoutonPRCalhounMESemendeferiKAhrens-BarbeauC 2011 Neuron number and size in prefrontal cortex of children with autism. JAMA 306 2001 2010

18. StanfieldACMcIntoshAMSpencerMDPhilipRGaurS 2008 Towards a neuroanatomy of autism: a systematic review and meta-analysis of structural magnetic resonance imaging studies. Eur Psychiatry 23 289 299

19. CourchesneEPierceKSchumannCMRedcayEBuckwalterJA 2007 Mapping early brain development in autism. Neuron 56 399 413

20. VoineaguIWangXJohnstonPLoweJKTianY 2011 Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474 380 384

21. Araghi-NiknamMFatemiSH 2003 Levels of Bcl-2 and P53 are altered in superior frontal and cerebellar cortices of autistic subjects. Cellular and molecular neurobiology 23 945 952

22. GarbettKEbertPJMitchellALintasCManziB 2008 Immune transcriptome alterations in the temporal cortex of subjects with autism. Neurobiology of disease 30 303 311

23. VargasDLNascimbeneCKrishnanCZimmermanAWPardoCA 2005 Neuroglial activation and neuroinflammation in the brain of patients with autism. Annals of neurology 57 67 81

24. OblakALGibbsTTBlattGJ 2010 Decreased GABA(B) Receptors in the Cingulate Cortex and Fusiform Gyrus in Autism. Journal of neurochemistry 114 1414 1423

25. SebatJLakshmiBMalhotraDTrogeJLese-MartinC 2007 Strong association of de novo copy number mutations with autism. Science (New York, NY) 316 445 449

26. PintoDPagnamentaATKleiLAnneyRMericoD 2010 Functional impact of global rare copy number variation in autism spectrum disorders. Nature 466 368 372

27. AprilCKlotzleBRoyceTWickham-GarciaEBoyaniwskyT 2009 Whole-genome gene expression profiling of formalin-fixed, paraffin-embedded tissue samples. PLoS ONE 4 e8162 doi:10.1371/journal.pone.0008162

28. FanJ-BYeakleyJMBibikovaMChudinEWickhamE 2004 A versatile assay for high-throughput gene expression profiling on universal array matrices. Genome research 14 878 885

29. AbramovitzMOrdanic-KodaniMWangYLiZCatzavelosC 2008 Optimization of RNA extraction from FFPE tissues for expression profiling in the DASL assay. BioTechniques 44 417 423

30. HuangDWShermanBTLempickiRA 2009 Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic acids research 37 1 13

31. HuangDWShermanBTLempickiRA 2009 Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature protocols 4 44 57

32. FreeseJLPinoDPleasureSJ 2010 Wnt signaling in development and disease. Neurobiology of disease 38 148 153

33. LijamNPaylorRMcDonaldMCrawleyJDengC 1997 Social Interaction and Sensorimotor Gating Abnormalities in Mice Lacking Dvl1. Cell 90 895 905

34. WigleJTEisenstatDD 2008 Homeobox genes in vertebrate forebrain development and disease. Clinical genetics 73 212 226

35. SchierAF 2009 Nodal morphogens. Cold Spring Harbor perspectives in biology 1 a003459

36. ChenZPalmerTD 2008 Cellular repair of CNS disorders: an immunological perspective. Human molecular genetics 17 R84 92

37. LieDCSongHColamarinoSAMingG-lGageFH 2004 NEUROGENESIS IN THE ADULT BRAIN: New Strategies for Central Nervous System Diseases

38. LaiMGluckmanPDragunowMHughesPE 1997 Focal brain injury increases activin betaA mRNA expression in hippocampal neurons. Neuroreport 8 2691 2694

39. AgetaHMurayamaAMigishimaRKidaSTsuchidaK 2008 Activin in the brain modulates anxiety-related behavior and adult neurogenesis. PLoS ONE 3 e1869 doi:10.1371/journal.pone.0001869

40. LatresEChiaurDSPaganoM 1999 The human F box protein beta-Trcp associates with the Cul1/Skp1 complex and regulates the stability of beta-catenin. Oncogene 18 849 854

41. MadsenT 2003 Chronic electroconvulsive seizure up-regulates β-catenin expression in rat hippocampus: role in adult neurogenesis. Biological Psychiatry 54 1006 1014

42. KuwabaraTHsiehJMuotriAYeoGWarashinaM 2009 Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis. Nature neuroscience 12 1097 1105

43. LimDATramontinADTrevejoJMHerreraDGGarcía-VerdugoJM 2000 Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 28 713 726

44. GroszerMEricksonRScripture-AdamsDDLescheRTrumppA 2001 Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science (New York, NY) 294 2186 2189

45. ButlerMGDasoukiMJZhouX-PTalebizadehZBrownM 2005 Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations. Journal of medical genetics 42 318 321

46. PageDTKutiOJPrestiaCSurM 2009 Haploinsufficiency for Pten and Serotonin transporter cooperatively influences brain size and social behavior. Proceedings of the National Academy of Sciences of the United States of America 106 1989 1994

47. HayN 2005 The Akt-mTOR tango and its relevance to cancer. Cancer cell 8 179 183

48. OrlovaKACrinoPB 2010 The tuberous sclerosis complex. Annals of the New York Academy of Sciences 1184 87 105

49. ChennAWalshCA 2002 Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science (New York, NY) 297 365 369

50. TissirFGoffinetAM 2003 Reelin and brain development. Nature reviews Neuroscience 4 496 505

51. PersicoAMD'AgrumaLMaioranoNTotaroAMiliterniR 2001 Reelin gene alleles and haplotypes as a factor predisposing to autistic disorder. Molecular psychiatry 6 150 159

52. Wynshaw-BorisAPramparoTYounYHHirotsuneS 2010 Lissencephaly: mechanistic insights from animal models and potential therapeutic strategies. Seminars in cell & developmental biology 21 823 830

53. WangKLiMHadleyDLiuRGlessnerJ 2007 PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome research 17 1665 1674

54. SandersSJErcan-SencicekAGHusVLuoRMurthaMT 2011 Multiple Recurrent De Novo CNVs, Including Duplications of the 7q11.23 Williams Syndrome Region, Are Strongly Associated with Autism. Neuron 70 863 885

55. WangKZhangHMaDBucanMGlessnerJT 2009 Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature 459 528 533

56. WeissLAArkingDEDalyMJChakravartiA 2009 A genome-wide linkage and association scan reveals novel loci for autism. Nature 461 802 808

57. CarreiraBPMorteMIInacioACostaGRosmaninho-SalgadoJ 2010 Nitric oxide stimulates the proliferation of neural stem cells bypassing the epidermal growth factor receptor. Stem Cells 28 1219 1230

58. WeiCJLiWChenJF 2011 Normal and abnormal functions of adenosine receptors in the central nervous system revealed by genetic knockout studies. Biochim Biophys Acta 1808 1358 1379

59. PierceKEylerL 2011 Structural and Functional Brain Development In Autism: The Impact of Early Brain Overgrowth and Considerations for Treatment. FeinDeborah Oxford University Press, The Neuropsychology of Autism 407 450

60. CourchesneEPierceK 2005 Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection. Current opinion in neurobiology 15 225 230

61. CourchesneEPierceK 2005 Brain overgrowth in autism during a critical time in development: implications for frontal pyramidal neuron and interneuron development and connectivity. Int J Dev Neurosci 23 153 170

62. CourchesneECampbellKSolsoS 2010 Brain Growth Across the Life Span in Autism: Age-Specific Changes in Anatomical Pathology. Brain research

63. BonaguidiMAPengCYMcGuireTFalcigliaGGobeskeKT 2008 Noggin expands neural stem cells in the adult hippocampus. J Neurosci 28 9194 9204

64. GajeraCREmichHLioubinskiOChristABeckervordersandforth-BonkR 2010 LRP2 in ependymal cells regulates BMP signaling in the adult neurogenic niche. J Cell Sci 123 1922 1930

65. FrankCLGeXXieZZhouYTsaiLH 2010 Control of activating transcription factor 4 (ATF4) persistence by multisite phosphorylation impacts cell cycle progression and neurogenesis. J Biol Chem 285 33324 33337

66. ZhangCWuHZhuXWangYGuoJ 2011 Role of transcription factors in neurogenesis after cerebral ischemia. Rev Neurosci 22 457 465

67. OhiraK 2011 Injury-induced neurogenesis in the mammalian forebrain. Cell Mol Life Sci 68 1645 1656

68. IdekerTDutkowskiJHoodL 2011 Boosting signal-to-noise in complex biology: prior knowledge is power. Cell 144 860 863

69. BoulangerLMShatzCJ 2004 Immune signalling in neural development, synaptic plasticity and disease. Nat Rev Neurosci 5 521 531

70. O'DriscollMJeggoPA 2008 The role of the DNA damage response pathways in brain development and microcephaly: insight from human disorders. DNA Repair (Amst) 7 1039 1050

71. KimWRSunW 2011 Programmed cell death during postnatal development of the rodent nervous system. Dev Growth Differ 53 225 235

72. OnoreCCareagaMAshwoodP 2011 The role of immune dysfunction in the pathophysiology of autism. Brain Behav Immun

73. WideraDMikenbergIElversMKaltschmidtCKaltschmidtB 2006 Tumor necrosis factor alpha triggers proliferation of adult neural stem cells via IKK/NF-kappaB signaling. BMC Neurosci 7 64

74. StellwagenDMalenkaRC 2006 Synaptic scaling mediated by glial TNF-alpha. Nature 440 1054 1059

75. DuPKibbeWALinSM 2008 lumi: a pipeline for processing Illumina microarray. Bioinformatics (Oxford, England) 24 1547 1548

76. JohnsonWELiCRabinovicA 2007 Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics (Oxford, England) 8 118 127

77. ZapalaMASchorkNJ 2006 Multivariate regression analysis of distance matrices for testing associations between gene expression patterns and related variables. Proceedings of the National Academy of Sciences of the United States of America 103 19430 19435

78. ChowMWinnMLiHAprilCBarnesCC in press Genome-wide Brain Gene Expression Microarray Data Preprocessing and Quality Control Scheme using the Illumina DASL Assay

79. BenjaminiYHochbergY 1995 Controlling the False Discovery Rate: a Practical and Powerful Approach to Multiple Testing. J R Statist Soc 57 289 300

80. FalconSGentlemanR 2007 Using GOstats to test gene lists for GO term association. Bioinformatics (Oxford, England) 23 257 258

81. RozenSSkaletskyH 2003 Primer3 on the WWW for General Users and for Biologist Programmers. Methods 132

82. PurcellSNealeBToddbrownKThomasLFerreiraM 2007 PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. The American Journal of Human Genetics 81 559 575

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2012 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#