#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Rapid Analysis of Genome Rearrangements by Multiplex Ligation–Dependent Probe Amplification


Aneuploidy and gross chromosomal rearrangements (GCRs) can lead to genetic diseases and the development of cancer. We previously demonstrated that introduction of the repetitive retrotransposon Ty912 onto a nonessential chromosome arm of Saccharomyces cerevisiae led to increased genome instability predominantly due to increased rates of formation of monocentric nonreciprocal translocations. In this study, we adapted Multiplex Ligation–dependent Probe Amplification (MLPA) to analyze a large numbers of these GCRs. Using MLPA, we found that the distribution of translocations induced by the presence of Ty912 in a wild-type strain was nonrandom and that the majority of these translocations were mediated by only six translocation targets on four different chromosomes, even though there were 254 potential Ty-related translocation targets in the S. cerevisiae genome. While the majority of Ty912-mediated translocations resulted from RAD52-dependent recombination, we observed a number of nonreciprocal translocations mediated by RAD52-independent recombination between Ty1 elements. The formation of these RAD52-independent translocations did not require the Rad51 or Rad59 homologous pairing proteins or the Rad1–Rad10 endonuclease complex that processes branched DNAs during recombination. Finally, we found that defects in ASF1-RTT109–dependent acetylation of histone H3 lysine residue 56 (H3K56) resulted in increased accumulation of both GCRs and whole-chromosome duplications, and resulted in aneuploidy that tended to occur simultaneously with GCRs. Overall, we found that MLPA is a versatile technique for the rapid analysis of GCRs and can facilitate the genetic analysis of the pathways that prevent and promote GCRs and aneuploidy.


Vyšlo v časopise: Rapid Analysis of Genome Rearrangements by Multiplex Ligation–Dependent Probe Amplification. PLoS Genet 8(3): e32767. doi:10.1371/journal.pgen.1002539
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002539

Souhrn

Aneuploidy and gross chromosomal rearrangements (GCRs) can lead to genetic diseases and the development of cancer. We previously demonstrated that introduction of the repetitive retrotransposon Ty912 onto a nonessential chromosome arm of Saccharomyces cerevisiae led to increased genome instability predominantly due to increased rates of formation of monocentric nonreciprocal translocations. In this study, we adapted Multiplex Ligation–dependent Probe Amplification (MLPA) to analyze a large numbers of these GCRs. Using MLPA, we found that the distribution of translocations induced by the presence of Ty912 in a wild-type strain was nonrandom and that the majority of these translocations were mediated by only six translocation targets on four different chromosomes, even though there were 254 potential Ty-related translocation targets in the S. cerevisiae genome. While the majority of Ty912-mediated translocations resulted from RAD52-dependent recombination, we observed a number of nonreciprocal translocations mediated by RAD52-independent recombination between Ty1 elements. The formation of these RAD52-independent translocations did not require the Rad51 or Rad59 homologous pairing proteins or the Rad1–Rad10 endonuclease complex that processes branched DNAs during recombination. Finally, we found that defects in ASF1-RTT109–dependent acetylation of histone H3 lysine residue 56 (H3K56) resulted in increased accumulation of both GCRs and whole-chromosome duplications, and resulted in aneuploidy that tended to occur simultaneously with GCRs. Overall, we found that MLPA is a versatile technique for the rapid analysis of GCRs and can facilitate the genetic analysis of the pathways that prevent and promote GCRs and aneuploidy.


Zdroje

1. LengauerCKinzlerKWVogelsteinB 1998 Genetic instabilities in human cancers. Nature 396 643 649

2. AlbertsonDGCollinsCMcCormickFGrayJW 2003 Chromosome aberrations in solid tumors. Nat Genet 34 369 376

3. BayaniJZielenskaMPanditaAAl-RomaihKKaraskovaJ 2003 Spectral karyotyping identifies recurrent complex rearrangements of chromosomes 8, 17, and 20 in osteosarcomas. Genes Chromosomes Cancer 36 7 16

4. RobertsCGTattersallMH 1990 Cytogenetic study of solid ovarian tumors. Cancer Genet Cytogenet 48 243 253

5. MeffordHCEichlerEE 2009 Duplication hotspots, rare genomic disorders, and common disease. Curr Opin Genet Dev 19 196 204

6. DierssenMHeraultYEstivillX 2009 Aneuploidy: from a physiological mechanism of variance to Down syndrome. Physiol Rev 89 887 920

7. ChenCKolodnerRD 1999 Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nat Genet 23 81 85

8. KanellisPAgyeiRDurocherD 2003 Elg1 forms an alternative PCNA-interacting RFC complex required to maintain genome stability. Curr Biol 13 1583 1595

9. NarayananVMieczkowskiPAKimHMPetesTDLobachevKS 2006 The pattern of gene amplification is determined by the chromosomal location of hairpin-capped breaks. Cell 125 1283 1296

10. MyungKKolodnerRD 2003 Induction of genome instability by DNA damage in Saccharomyces cerevisiae. DNA Repair (Amst) 2 243 258

11. PutnamCDHayesTKKolodnerRD 2009 Specific pathways prevent duplication-mediated genome rearrangements. Nature 460 984 989

12. ChanJEKolodnerRD 2011 A Genetic and Structural Study of Genome Rearrangements Mediated by High Copy Repeat Ty1 Elements. PLoS Genet 7 e1002089 doi:10.1371/journal.pgen.1002089

13. KolodnerRDPutnamCDMyungK 2002 Maintenance of genome stability in Saccharomyces cerevisiae. Science 297 552 557

14. LemoineFJDegtyarevaNPKokoskaRJPetesTD 2008 Reduced levels of DNA polymerase delta induce chromosome fragile site instability in yeast. Mol Cell Biol 28 5359 5368

15. LemoineFJDegtyarevaNPLobachevKPetesTD 2005 Chromosomal translocations in yeast induced by low levels of DNA polymerase a model for chromosome fragile sites. Cell 120 587 598

16. DowningBMorganRVanHulleKDeemAMalkovaA 2008 Large inverted repeats in the vicinity of a single double-strand break strongly affect repair in yeast diploids lacking Rad51. Mutat Res 645 9 18

17. PutnamCDHayesTKKolodnerRD 2010 Post-replication repair suppresses duplication-mediated genome instability. PLoS Genet 6 e1000933 doi:10.1371/journal.pgen.1000933

18. VernonMLobachevKPetesTD 2008 High rates of “unselected” aneuploidy and chromosome rearrangements in tel1 mec1 haploid yeast strains. Genetics 179 237 247

19. MyungKChenCKolodnerRD 2001 Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae. Nature 411 1073 1076

20. MyungKDattaAKolodnerRD 2001 Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae. Cell 104 397 408

21. MyungKPennaneachVKatsESKolodnerRD 2003 Saccharomyces cerevisiae chromatin-assembly factors that act during DNA replication function in the maintenance of genome stability. Proc Natl Acad Sci U S A 100 6640 6645

22. MyungKSmithSKolodnerRD 2004 Mitotic checkpoint function in the formation of gross chromosomal rearrangements in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 101 15980 15985

23. PennaneachVKolodnerRD 2009 Stabilization of dicentric translocations through secondary rearrangements mediated by multiple mechanisms in S. cerevisiae. PLoS ONE 4 e6389 doi:10.1371/journal.pone.0006389

24. DeemABarkerKVanhulleKDowningBVaylA 2008 Defective break-induced replication leads to half-crossovers in Saccharomyces cerevisiae. Genetics 179 1845 1860

25. SmithCELamAFSymingtonLS 2009 Aberrant double-strand break repair resulting in half crossovers in mutants defective for Rad51 or the DNA polymerase delta complex. Mol Cell Biol 29 1432 1441

26. ArguesoJLWestmorelandJMieczkowskiPAGawelMPetesTD 2008 Double-strand breaks associated with repetitive DNA can reshape the genome. Proc Natl Acad Sci U S A 105 11845 11850

27. HoangMLTanFJLaiDCCelnikerSEHoskinsRA 2010 Competitive repair by naturally dispersed repetitive DNA during non-allelic homologous recombination. PLoS Genet 6 e1001228 doi:10.1371/journal.pgen.1001228

28. SchmidtKHPennaneachVPutnamCDKolodnerRD 2006 Analysis of gross-chromosomal rearrangements in Saccharomyces cerevisiae. Methods Enzymol 409 462 476

29. CampbellPJStephensPJPleasanceEDO'MearaSLiH 2008 Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat Genet 40 722 729

30. AretzSStienenDUhlhaasSStolteMEntiusMM 2007 High proportion of large genomic deletions and a genotype phenotype update in 80 unrelated families with juvenile polyposis syndrome. J Med Genet 44 702 709

31. RedekerEJde VisserASBergenAAMannensMM 2008 Multiplex ligation-dependent probe amplification (MLPA) enhances the molecular diagnosis of aniridia and related disorders. Mol Vis 14 836 840

32. SchoutenJPMcElgunnCJWaaijerRZwijnenburgDDiepvensF 2002 Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res 30 e57

33. WheelanSJScheifeleLZMartinez-MurilloFIrizarryRABoekeJD 2006 Transposon insertion site profiling chip (TIP-chip). Proc Natl Acad Sci U S A 103 17632 17637

34. SelvaEMNewLCrouseGFLahueRS 1995 Mismatch correction acts as a barrier to homeologous recombination in Saccharomyces cerevisiae. Genetics 139 1175 1188

35. DattaAAdjiriANewLCrouseGFJinks RobertsonS 1996 Mitotic crossovers between diverged sequences are regulated by mismatch repair proteins in Saccaromyces cerevisiae. Mol Cell Biol 16 1085 1093

36. DuanZAndronescuMSchutzKMcIlwainSKimYJ 2010 A three-dimensional model of the yeast genome. Nature 465 363 367

37. KroghBOSymingtonLS 2004 Recombination proteins in yeast. Annu Rev Genet 38 233 271

38. MangahasJLAlexanderMKSandellLLZakianVA 2001 Repair of chromosome ends after telomere loss in Saccharomyces. Mol Biol Cell 12 4078 4089

39. IvanovELHaberJE 1995 RAD1 and RAD10, but not other excision repair genes, are required for double-strand break-induced recombination in Saccharomyces cerevisiae. Mol Cell Biol 15 2245 2251

40. HolmS 1979 A Simple Sequentially Rejective Multiple Test Procedure. Scandinavian Journal of Statistics 6 65 70

41. SchneiderJBajwaPJohnsonFCBhaumikSRShilatifardA 2006 Rtt109 is required for proper H3K56 acetylation: a chromatin mark associated with the elongating RNA polymerase II. J Biol Chem 281 37270 37274

42. HanJZhouHHorazdovskyBZhangKXuRM 2007 Rtt109 acetylates histone H3 lysine 56 and functions in DNA replication. Science 315 653 655

43. ChenCCCarsonJJFeserJTamburiniBZabaronickS 2008 Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair. Cell 134 231 243

44. DriscollRHudsonAJacksonSP 2007 Yeast Rtt109 promotes genome stability by acetylating histone H3 on lysine 56. Science 315 649 652

45. YuenKWWarrenCDChenOKwokTHieterP 2007 Systematic genome instability screens in yeast and their potential relevance to cancer. Proc Natl Acad Sci U S A 104 3925 3930

46. DuesbergPRauschCRasnickDHehlmannR 1998 Genetic instability of cancer cells is proportional to their degree of aneuploidy. Proc Natl Acad Sci U S A 95 13692 13697

47. TsubotaTBerndsenCEErkmannJASmithCLYangL 2007 Histone H3-K56 acetylation is catalyzed by histone chaperone-dependent complexes. Mol Cell 25 703 712

48. TylerJKCollinsKAPrasad-SinhaJAmiottEBulgerM 2001 Interaction between the Drosophila CAF-1 and ASF1 chromatin assembly factors. Mol Cell Biol 21 6574 6584

49. KatsESAlbuquerqueCPZhouHKolodnerRD 2006 Checkpoint functions are required for normal S-phase progression in Saccharomyces cerevisiae RCAF- and CAF-I-defective mutants. Proc Natl Acad Sci U S A 103 3710 3715

50. SugawaraNIraGHaberJE 2000 DNA length dependence of the single-strand annealing pathway and the role of Saccharomyces cerevisiae RAD59 in double-strand break repair. Mol Cell Biol 20 5300 5309

51. VanHulleKLemoineFJNarayananVDowningBHullK 2007 Inverted DNA repeats channel repair of distant double-strand breaks into chromatid fusions and chromosomal rearrangements. Mol Cell Biol 27 2601 2614

52. PannunzioNRMantheyGMBailisAM 2008 RAD59 is required for efficient repair of simultaneous double-strand breaks resulting in translocations in Saccharomyces cerevisiae. DNA Repair (Amst) 7 788 800

53. DavisAPSymingtonLS 2001 The yeast recombinational repair protein Rad59 interacts with Rad52 and stimulates single-strand annealing. Genetics 159 515 525

54. HaberJEHearnM 1985 Rad52-independent mitotic gene conversion in Saccharomyces cerevisiae frequently results in chromosomal loss. Genetics 111 7 22

55. OzenbergerBARoederGS 1991 A unique pathway of double-strand break repair operates in tandemly repeated genes. Mol Cell Biol 11 1222 1231

56. Fishman-LobellJHaberJE 1992 Removal of nonhomologous DNA ends in double-strand break recombination: the role of the yeast ultraviolet repair gene RAD1. Science 258 480 484

57. SchwartzEKHeyerWD 2011 Processing of joint molecule intermediates by structure-selective endonucleases during homologous recombination in eukaryotes. Chromosoma 120 109 127

58. Bastin-ShanowerSAFrickeWMMullenJRBrillSJ 2003 The mechanism of Mus81-Mms4 cleavage site selection distinguishes it from the homologous endonuclease Rad1–Rad10. Mol Cell Biol 23 3487 3496

59. HanJZhouHLiZXuRMZhangZ 2007 Acetylation of lysine 56 of histone H3 catalyzed by RTT109 and regulated by ASF1 is required for replisome integrity. J Biol Chem 282 28587 28596

60. AminNSNguyenMNOhSKolodnerRD 2001 exo1-Dependent mutator mutations: model system for studying functional interactions in mismatch repair. Mol Cell Biol 21 5142 5155

61. XuFZhangKGrunsteinM 2005 Acetylation in histone H3 globular domain regulates gene expression in yeast. Cell 121 375 385

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2012 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#