#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Werner Syndrome Protein Functions Upstream of ATR and ATM in Response to DNA Replication Inhibition and Double-Strand DNA Breaks


WRN-1 is the Caenorhabditis elegans homolog of the human Werner syndrome protein, a RecQ helicase, mutations of which are associated with premature aging and increased genome instability. Relatively little is known as to how WRN-1 functions in DNA repair and DNA damage signaling. Here, we take advantage of the genetic and cytological approaches in C. elegans to dissect the epistatic relationship of WRN-1 in various DNA damage checkpoint pathways. We found that WRN-1 is required for CHK1 phosphorylation induced by DNA replication inhibition, but not by UV radiation. Furthermore, WRN-1 influences the RPA-1 focus formation, suggesting that WRN-1 functions in the same step or upstream of RPA-1 in the DNA replication checkpoint pathway. In response to ionizing radiation, RPA-1 focus formation and nuclear localization of ATM depend on WRN-1 and MRE-11. We conclude that C. elegans WRN-1 participates in the initial stages of checkpoint activation induced by DNA replication inhibition and ionizing radiation. These functions of WRN-1 in upstream DNA damage signaling are likely to be conserved, but might be cryptic in human systems due to functional redundancy.


Vyšlo v časopise: The Werner Syndrome Protein Functions Upstream of ATR and ATM in Response to DNA Replication Inhibition and Double-Strand DNA Breaks. PLoS Genet 6(1): e32767. doi:10.1371/journal.pgen.1000801
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1000801

Souhrn

WRN-1 is the Caenorhabditis elegans homolog of the human Werner syndrome protein, a RecQ helicase, mutations of which are associated with premature aging and increased genome instability. Relatively little is known as to how WRN-1 functions in DNA repair and DNA damage signaling. Here, we take advantage of the genetic and cytological approaches in C. elegans to dissect the epistatic relationship of WRN-1 in various DNA damage checkpoint pathways. We found that WRN-1 is required for CHK1 phosphorylation induced by DNA replication inhibition, but not by UV radiation. Furthermore, WRN-1 influences the RPA-1 focus formation, suggesting that WRN-1 functions in the same step or upstream of RPA-1 in the DNA replication checkpoint pathway. In response to ionizing radiation, RPA-1 focus formation and nuclear localization of ATM depend on WRN-1 and MRE-11. We conclude that C. elegans WRN-1 participates in the initial stages of checkpoint activation induced by DNA replication inhibition and ionizing radiation. These functions of WRN-1 in upstream DNA damage signaling are likely to be conserved, but might be cryptic in human systems due to functional redundancy.


Zdroje

1. YuCE

OshimaJ

FuYH

WijsmanEM

HisamaF

1996 Positional cloning of the Werner's syndrome gene. Science 272 258 262

2. ShenJ

LoebLA

2001 Unwinding the molecular basis of the Werner syndrome. Mech Ageing Dev 122 921 944

3. OzgencA

LoebLA

2005 Current advances in unraveling the function of the Werner syndrome protein. Mutat Res 577 237 251

4. ChengWH

MuftuogluM

BohrVA

2007 Werner syndrome protein: functions in the response to DNA damage and replication stress in S-phase. Exp Gerontol 42 871 878

5. BohrVA

2008 Rising from the RecQ-age: the role of human RecQ helicases in genome maintenance. Trends Biochem Sci 33 609 620

6. WyllieFS

JonesCJ

SkinnerJW

HaughtonMF

WallisC

2000 Telomerase prevents the accelerated cell ageing of Werner syndrome fibroblasts. Nat Genet 24 16 17

7. ChangS

MultaniAS

CabreraNG

NaylorML

LaudP

2004 Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat Genet 36 877 882

8. OpreskoPL

OtterleiM

GraakjaerJ

BruheimP

DawutL

2004 The Werner syndrome helicase and exonuclease cooperate to resolve telomeric D loops in a manner regulated by TRF1 and TRF2. Mol Cell 14 763 774

9. HuangS

LiB

GrayMD

OshimaJ

MianIS

1998 The premature ageing syndrome protein, WRN, is a 3′–>5′ exonuclease. Nat Genet 20 114 116

10. MoserMJ

HolleyWR

ChatterjeeA

MianIS

1997 The proofreading domain of Escherichia coli DNA polymerase I and other DNA and/or RNA exonuclease domains. Nucleic Acids Res 25 5110 5118

11. ShenJC

GrayMD

OshimaJ

Kamath-LoebAS

FryM

1998 Werner syndrome protein. I. DNA helicase and dna exonuclease reside on the same polypeptide. J Biol Chem 273 34139 34144

12. SuzukiN

ShiratoriM

GotoM

FuruichiY

1999 Werner syndrome helicase contains a 5′–>3′ exonuclease activity that digests DNA and RNA strands in DNA/DNA and RNA/DNA duplexes dependent on unwinding. Nucleic Acids Res 27 2361 2368

13. ChengWH

von KobbeC

OpreskoPL

ArthurLM

KomatsuK

2004 Linkage between Werner syndrome protein and the Mre11 complex via Nbs1. J Biol Chem 279 21169 21176

14. ChengWH

SakamotoS

FoxJT

KomatsuK

CarneyJ

2005 Werner syndrome protein associates with gamma H2AX in a manner that depends upon Nbs1. FEBS Lett 579 1350 1356

15. FranchittoA

OshimaJ

PichierriP

2003 The G2-phase decatenation checkpoint is defective in Werner syndrome cells. Cancer Res 63 3289 3295

16. ChengWH

MufticD

MuftuogluM

DawutL

MorrisC

2008 WRN is required for ATM activation and the S-phase checkpoint in response to interstrand cross-link-induced DNA double-strand breaks. Mol Biol Cell 19 3923 3933

17. KimbleJ

CrittendenSL

2007 Controls of germline stem cells, entry into meiosis, and the sperm/oocyte decision in Caenorhabditis elegans. Annu Rev Cell Dev Biol 23 405 433

18. GartnerA

MilsteinS

AhmedS

HodgkinJ

HengartnerMO

2000 A conserved checkpoint pathway mediates DNA damage-induced apoptosis and cell cycle arrest in C. elegans. Mol Cell 5 435 443

19. LeeSJ

YookJS

HanSM

KooHS

2004 A Werner syndrome protein homolog affects C. elegans development, growth rate, life span and sensitivity to DNA damage by acting at a DNA damage checkpoint. Development 131 2565 2575

20. ClejanI

BoerckelJ

AhmedS

2006 Developmental modulation of nonhomologous end joining in Caenorhabditis elegans. Genetics 173 1301 1317

21. ZhaoH

Piwnica-WormsH

2001 ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1. Mol Cell Biol 21 4129 4139

22. MacQueenAJ

VilleneuveAM

2001 Nuclear reorganization and homologous chromosome pairing during meiotic prophase require C. elegans chk-2. Genes Dev 15 1674 1687

23. GateiM

SloperK

SorensenC

SyljuasenR

FalckJ

2003 Ataxia-telangiectasia-mutated (ATM) and NBS1-dependent phosphorylation of Chk1 on Ser-317 in response to ionizing radiation. J Biol Chem 278 14806 14811

24. MoserSC

von ElsnerS

BussingI

AlpiA

SchnabelR

2009 Functional dissection of Caenorhabditis elegans CLK-2/TEL2 cell cycle defects during embryogenesis and germline development. PLoS Genet 5 e1000451 doi:10.1371/journal.pgen.1000451

25. CrittendenSL

LeonhardKA

ByrdDT

KimbleJ

2006 Cellular analyses of the mitotic region in the Caenorhabditis elegans adult germ line. Mol Biol Cell 17 3051 3061

26. Garcia-MuseT

BoultonSJ

2005 Distinct modes of ATR activation after replication stress and DNA double-strand breaks in Caenorhabditis elegans. EMBO J 24 4345 4355

27. CortezD

GuntukuS

QinJ

ElledgeSJ

2001 ATR and ATRIP: partners in checkpoint signaling. Science 294 1713 1716

28. HyunM

BohrVA

AhnB

2008 Biochemical characterization of the WRN-1 RecQ helicase of Caenorhabditis elegans. Biochemistry 47 7583 7593

29. BjergbaekL

CobbJA

Tsai-PflugfelderM

GasserSM

2005 Mechanistically distinct roles for Sgs1p in checkpoint activation and replication fork maintenance. EMBO J 24 405 417

30. AhmedS

AlpiA

HengartnerMO

GartnerA

2001 C. elegans RAD-5/CLK-2 defines a new DNA damage checkpoint protein. Curr Biol 11 1934 1944

31. GartnerA

BoagPR

BlackwellTK

2008 Germline survival and apoptosis. WormBook 1 20

32. StergiouL

HengartnerMO

2004 Death and more: DNA damage response pathways in the nematode C. elegans. Cell Death Differ 11 21 28

33. DohertyKM

SommersJA

GrayMD

LeeJW

von KobbeC

2005 Physical and functional mapping of the replication protein a interaction domain of the werner and bloom syndrome helicases. J Biol Chem 280 29494 29505

34. SidorovaJM

LiN

FolchA

MonnatRJJr

2008 The RecQ helicase WRN is required for normal replication fork progression after DNA damage or replication fork arrest. Cell Cycle 7 796 807

35. ByunTS

PacekM

YeeMC

WalterJC

CimprichKA

2005 Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev 19 1040 1052

36. Unsal-KacmazK

MakhovAM

GriffithJD

SancarA

2002 Preferential binding of ATR protein to UV-damaged DNA. Proc Natl Acad Sci U S A 99 6673 6678

37. StergiouL

DoukoumetzidisK

SendoelA

HengartnerMO

2007 The nucleotide excision repair pathway is required for UV-C-induced apoptosis in Caenorhabditis elegans. Cell Death Differ 14 1129 1138

38. LanL

NakajimaS

KomatsuK

NussenzweigA

ShimamotoA

2005 Accumulation of Werner protein at DNA double-strand breaks in human cells. J Cell Sci 118 4153 4162

39. GravelS

ChapmanJR

MagillC

JacksonSP

2008 DNA helicases Sgs1 and BLM promote DNA double-strand break resection. Genes Dev 22 2767 2772

40. SartoriAA

LukasC

CoatesJ

MistrikM

FuS

2007 Human CtIP promotes DNA end resection. Nature 450 509 514

41. SchaetzleinS

KodandaramireddyNR

JuZ

LechelA

StepczynskaA

2007 Exonuclease-1 deletion impairs DNA damage signaling and prolongs lifespan of telomere-dysfunctional mice. Cell 130 863 877

42. ShiotaniB

ZouL

2009 Single-stranded DNA orchestrates an ATM-to-ATR switch at DNA breaks. Mol Cell 33 547 558

43. NimonkarAV

OzsoyAZ

GenschelJ

ModrichP

KowalczykowskiSC

2008 Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair. Proc Natl Acad Sci U S A 105 16906 16911

44. JazayeriA

FalckJ

LukasC

BartekJ

SmithGC

2006 ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat Cell Biol 8 37 45

45. RichardDJ

BoldersonE

CubedduL

WadsworthRI

SavageK

2008 Single-stranded DNA-binding protein hSSB1 is critical for genomic stability. Nature 453 677 681

46. BrennerS

1974 The genetics of Caenorhabditis elegans. Genetics 77 71 94

47. TimmonsL

FireA

1998 Specific interference by ingested dsRNA. Nature 395 854

48. JonesAR

FrancisR

SchedlT

1996 GLD-1, a cytoplasmic protein essential for oocyte differentiation, shows stage- and sex-specific expression during Caenorhabditis elegans germline development. Dev Biol 180 165 183

49. ItoK

McGheeJD

1987 Parental DNA strands segregate randomly during embryonic development of Caenorhabditis elegans. Cell 49 329 336

50. ParkJE

LeeKY

LeeSJ

OhWS

JeongPY

2008 The efficiency of RNA interference in Bursaphelenchus xylophilus. Mol Cells 26 81 86

51. StiffT

WalkerSA

CerosalettiK

GoodarziAA

PetermannE

2006 ATR-dependent phosphorylation and activation of ATM in response to UV treatment or replication fork stalling. EMBO J 25 5775 5782

52. KalogeropoulosN

ChristoforouC

GreenAJ

GillS

AshcroftNR

2004 chk-1 is an essential gene and is required for an S-M checkpoint during early embryogenesis. Cell Cycle 3 1196 1200

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#