#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

and Regulate Reproductive Habit in Rice


Sexual reproduction is essential for the life cycle of most angiosperms. However, pseudovivipary is an important reproductive strategy in some grasses. In this mode of reproduction, asexual propagules are produced in place of sexual reproductive structures. However, the molecular mechanism of pseudovivipary still remains a mystery. In this work, we found three naturally occurring mutants in rice, namely, phoenix (pho), degenerative palea (dep), and abnormal floral organs (afo). Genetic analysis of them indicated that the stable pseudovivipary mutant pho was a double mutant containing both a Mendelian mutation in DEP and a non-Mendelian mutation in AFO. Further map-based cloning and microarray analysis revealed that dep mutant was caused by a genetic alteration in OsMADS15 while afo was caused by an epigenetic mutation in OsMADS1. Thus, OsMADS1 and OsMADS15 are both required to ensure sexual reproduction in rice and mutations of them lead to the switch of reproductive habit from sexual to asexual in rice. For the first time, our results reveal two regulators for sexual and asexual reproduction modes in flowering plants. In addition, our findings also make it possible to manipulate the reproductive strategy of plants, at least in rice.


Vyšlo v časopise: and Regulate Reproductive Habit in Rice. PLoS Genet 6(1): e32767. doi:10.1371/journal.pgen.1000818
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1000818

Souhrn

Sexual reproduction is essential for the life cycle of most angiosperms. However, pseudovivipary is an important reproductive strategy in some grasses. In this mode of reproduction, asexual propagules are produced in place of sexual reproductive structures. However, the molecular mechanism of pseudovivipary still remains a mystery. In this work, we found three naturally occurring mutants in rice, namely, phoenix (pho), degenerative palea (dep), and abnormal floral organs (afo). Genetic analysis of them indicated that the stable pseudovivipary mutant pho was a double mutant containing both a Mendelian mutation in DEP and a non-Mendelian mutation in AFO. Further map-based cloning and microarray analysis revealed that dep mutant was caused by a genetic alteration in OsMADS15 while afo was caused by an epigenetic mutation in OsMADS1. Thus, OsMADS1 and OsMADS15 are both required to ensure sexual reproduction in rice and mutations of them lead to the switch of reproductive habit from sexual to asexual in rice. For the first time, our results reveal two regulators for sexual and asexual reproduction modes in flowering plants. In addition, our findings also make it possible to manipulate the reproductive strategy of plants, at least in rice.


Zdroje

1. TookeF

OrdidgeM

ChiurugwiT

BatteyN

2005 Mechanisms and function of flower and inflorescence reversion. J Exp Bot 56 2587 2599

2. BatteyNH

LyndonRF

1990 Reversion of flowering. The Botanical Review 56 162 189

3. ElmqvistT

CoxPA

1996 The evolution of vivipary in flowering plants. Oikos 77 3 9

4. GoebelKE

1905 Organography of plants, especially of the Archegoniata and Spermaphyta. Oxford Clarendon press 1 707

5. CoelhoFF

CapeloC

NevesAC

MartinsRP

FigueiraJE

2006 Seasonal timing of pseudoviviparous reproduction of Leiothrix (Eriocaulaceae) rupestrian species in South-eastern Brazil. Ann Bot (Lond) 98 1189 1195

6. PierceS

StirlingCM

BaxterR

2003 Pseudoviviparous reproduction of Poa alpina var. vivipara L. (Poaceae) during long-term exposure to elevated atmospheric CO2. Ann Bot (Lond) 91 613 622

7. VegaAS

Rúgolo de AgrasarZE

2006 Vivipary and pseudovivipary in the Poaceae, including the first record of pseudovivipary in Digitaria (Panicoideae: Paniceae). South African Journal of Botany 72 559 564

8. Gordon-GrayKD

BaijnathH

WardCJ

WraggPD

2009 Studies in Cyperaceae in southern Africa 42: Pseudo-vivipary in South African Cyperaceae. South African Journal of Botany 75 165 171

9. MiltonSJ

DeanWRJ

RahlaoSJ

2008 Evidence for induced pseudo-vivipary in Pennisetum setaceum (Fountain grass) invading a dry river, arid Karoo, South Africa. South African Journal of Botany 74 348 349

10. BallesterosE

CebrianE

Garcia-RubiesA

AlcoverroT

RomeroJ

2005 Pseudovivipary, a new form of asexual reproduction in the seagrass Posidonia oceanica. Botanica Marina 48 175 177

11. MooreDM

DoggettMC

1976 Pseudo-vivipary in Fuegian and Falkland Islands grasses. Br Antarct Surv Bull 43 103 110

12. LimJ

MoonYH

AnG

JangSK

2000 Two rice MADS domain proteins interact with OsMADS1. Plant Mol Biol 44 513 527

13. JeonJS

JangS

LeeS

NamJ

KimC

2000 leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice flower development. Plant Cell 12 871 884

14. ShitsukawaN

TahiraC

KassaiK

HirabayashiC

ShimizuT

2007 Genetic and epigenetic alteration among three homoeologous genes of a class E MADS box gene in hexaploid wheat. Plant Cell 19 1723 1737

15. ChenZX

WuJG

DingWN

ChenHM

WuP

2006 Morphogenesis and molecular basis on naked seed rice, a novel homeotic mutation of OsMADS1 regulating transcript level of AP3 homologue in rice. Planta 223 882 890

16. MalcomberST

KelloggEA

2004 Heterogeneous expression patterns and separate roles of the SEPALLATA gene LEAFY HULL STERILE1 in grasses. Plant Cell 16 1692 1706

17. PrasadK

SriramP

KumarCS

KushalappaK

VijayraghavanU

2001 Ectopic expression of rice OsMADS1 reveals a role in specifying the lemma and palea, grass floral organs analogous to sepals. Dev Genes Evol 211 281 290

18. JeonJS

LeeS

AnG

2008 Intragenic Control of Expression of a Rice MADS Box Gene OsMADS1. Mol Cells 26 474 480

19. PrasadK

ParameswaranS

VijayraghavanU

2005 OsMADS1, a rice MADS-box factor, controls differentiation of specific cell types in the lemma and palea and is an early-acting regulator of inner floral organs. Plant J 43 915 928

20. AgrawalGK

AbeK

YamazakiM

MiyaoA

HirochikaH

2005 Conservation of the E-function for floral organ identity in rice revealed by the analysis of tissue culture-induced loss-of-function mutants of the OsMADS1 gene. Plant Mol Biol 59 125 135

21. YamaguchiT

HiranoHY

2006 Function and diversification of MADS-box genes in rice. ScientificWorldJournal 6 1923 1932

22. KaterMM

DreniL

ColomboL

2006 Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis. J Exp Bot 57 3433 3444

23. KyozukaJ

KobayashiT

MoritaM

ShimamotoK

2000 Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes. Plant Cell Physiol 41 710 718

24. BommertP

Satoh-NagasawaN

JacksonD

HiranoHY

2005 Genetics and evolution of inflorescence and flower development in grasses. Plant Cell Physiol 46 69 78

25. FerrandizC

GuQ

MartienssenR

YanofskyMF

2000 Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127 725 734

26. DittaG

PinyopichA

RoblesP

PelazS

YanofskyMF

2004 The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol 14 1935 1940

27. BowmanJL

AlvarezJ

WeigelD

MeyerowitzEM

SmythDR

1993 Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development 119 721 743

28. PelazS

Gustafson-BrownC

KohalmiSE

CrosbyWL

YanofskyMF

2001 APETALA1 and SEPALLATA3 interact to promote flower development. Plant J 26 385 394

29. BowmanJL

SmythDR

MeyerowitzEM

1991 Genetic interactions among floral homeotic genes of Arabidopsis. Development 112 1 20

30. MeyerowitzEM

SmythDR

BowmanJL

1989 Abnormal flowers and pattern formation in floral. Development 106 209 217

31. IkedaK

SunoharaH

NagatoY

2004 Developmental course of inflorescence and spikelet in rice. Breeding Science 54 147 156

32. ThompsonJD

GibsonTJ

PlewniakF

JeanmouginF

HigginsDG

1997 The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25 4876 4882

33. KumarS

TamuraK

NeiM

2004 MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5 150 163

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#