#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Non-Coding Changes Cause Sex-Specific Wing Size Differences between Closely Related Species of


The genetic basis of morphological differences among species is still poorly understood. We investigated the genetic basis of sex-specific differences in wing size between two closely related species of Nasonia by positional cloning a major male-specific locus, wing-size1 (ws1). Male wing size increases by 45% through cell size and cell number changes when the ws1 allele from N. giraulti is backcrossed into a N. vitripennis genetic background. A positional cloning approach was used to fine-scale map the ws1 locus to a 13.5 kilobase region. This region falls between prospero (a transcription factor involved in neurogenesis) and the master sex-determining gene doublesex. It contains the 5′-UTR and cis-regulatory domain of doublesex, and no coding sequence. Wing size reduction correlates with an increase in doublesex expression level that is specific to developing male wings. Our results indicate that non-coding changes are responsible for recent divergence in sex-specific morphology between two closely related species. We have not yet resolved whether wing size evolution at the ws1 locus is caused by regulatory alterations of dsx or prospero, or by another mechanism. This study demonstrates the feasibility of efficient positional cloning of quantitative trait loci (QTL) involved in a broad array of phenotypic differences among Nasonia species.


Vyšlo v časopise: Non-Coding Changes Cause Sex-Specific Wing Size Differences between Closely Related Species of. PLoS Genet 6(1): e32767. doi:10.1371/journal.pgen.1000821
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1000821

Souhrn

The genetic basis of morphological differences among species is still poorly understood. We investigated the genetic basis of sex-specific differences in wing size between two closely related species of Nasonia by positional cloning a major male-specific locus, wing-size1 (ws1). Male wing size increases by 45% through cell size and cell number changes when the ws1 allele from N. giraulti is backcrossed into a N. vitripennis genetic background. A positional cloning approach was used to fine-scale map the ws1 locus to a 13.5 kilobase region. This region falls between prospero (a transcription factor involved in neurogenesis) and the master sex-determining gene doublesex. It contains the 5′-UTR and cis-regulatory domain of doublesex, and no coding sequence. Wing size reduction correlates with an increase in doublesex expression level that is specific to developing male wings. Our results indicate that non-coding changes are responsible for recent divergence in sex-specific morphology between two closely related species. We have not yet resolved whether wing size evolution at the ws1 locus is caused by regulatory alterations of dsx or prospero, or by another mechanism. This study demonstrates the feasibility of efficient positional cloning of quantitative trait loci (QTL) involved in a broad array of phenotypic differences among Nasonia species.


Zdroje

1. KoppA

TrueJR

2002 Evolution of male sexual characters in the Oriental Drosophila melanogaster species group. Evol Dev 4 278 291

2. KoppA

DuncanI

CarrollSB

2000 Genetic control and evolution of sexually dimorphic characters in Drosophila. Nature 408 553 559

3. WilliamsTM

SelegueJE

WernerT

GompelN

KoppA

2008 The regulation and evolution of a genetic switch controlling sexually dimorphic traits in Drosophila. Cell 134 610 623

4. SternDL

2000 Perspective: Evolutionary Developmental Biology and the Problem of Variation. Evolution 54 1079 1091

5. CarrollSB

2005 Evolution at Two Levels: On Genes and Form. PLoS Biol 3 e245 doi:10.1371/journal.pbio.0030245

6. HoekstraHE

CoyneJA

2007 The locus of evolution: evo devo and the genetics of adaptation. Evolution 61 995 1016

7. SternDL

OrgogozoV

2008 The loci of evolution: How predictable is genetic evolution? Evolution 54 2155 2177

8. WagnerGP

LynchVJ

2008 The gene regulatory logic of transcription factor evolution. Trends Ecol Evol 23 377 385

9. WerrenJH

LoehlinDW

2009 Nasonia: An Emerging Model System With 10. Haplodiploid Genetics. CSH Protoc doi:10.1101/pdb.emo134

10. WerrenJH

RichardsS

DesjardinsCA

NiehuisO

GadauJ

2010 Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science. In press

11. BreeuwerJAJ

WerrenJH

1990 Microorganisms Associated With Chromosome Destruction and Reproductive Isolation Between Two Insect Species. Nature 346 558 560

12. BordensteinSR

WerrenJH

2007 Bidirectional Incompatibility among divergent Wolbachia and incompatibility level differences among closely related Wolbachia in Nasonia. Heredity 99 278 287

13. WestonRF

QureshiI

WerrenJH

1999 Genetics of a wing size difference between two Nasonia species. J Evol Biol 12 586 595

14. DesjardinsCA

PerfecttiF

BartosJD

EndersLS

WerrenJH

2010 The genetic basis of interspecies host preference differences in the model parasitoid Nasonia. Heredity. In press. DOI:HDY.2009.145

15. LoehlinDW

EndersLS

WerrenJH

2010 Evolution of sex-specific wing shape at the widerwing locus in four species of Nasonia. Heredity. In press DOI:HDY.2009.146

16. WhitingAR

1967 The biology of the parasitic wasp Mormoniella vitripennis [ = Nasonia brevicornis] (Walker). Q Rev Biol 42 333 406

17. RaymondCS

MurphyMW

O'SullivanMG

BardwellVJ

ZarkowerD

2000 Dmrt1, a gene related to worm and fly sexual regulators, is required for mammalian testis differentiation. Genes Dev 14 2587 2595

18. OliveiraDCSG

WerrenJH

VerhulstEC

GiebelJD

KampingA

2009 Identification and characterization of the doublesex gene of Nasonia. Insect Mol Biol 18 315 324

19. ZwaanBJ

AzevedoRBR

JamesAC

Van 'T LandJ

PartridgeL

2000 Cellular basis of wing size variation in Drosophila melanogaster: a comparison of latitudinal clines on two continents. Heredity 84 338 347

20. RaychoudhuryR

DesjardinsCA

BuellesbachJ

LoehlinDW

GrillenbergerBK

2010 Behavioural and Genetic Characteristics of a New Species of Nasonia. Heredity. In press DOI:HDY.2009.147

21. Muñoz-TorresM

SaskiC

BlackmonB

Romero-SeversonJ

TomkinsJ

2010 Development of bacterial artificial chromosome library resources for parasitoid Hymenoptera (Nasonia vitripennis and Nasonia giraulti: Pteromalidae). Insect Mol Biol In press

22. NiehuisO

GibsonJD

RosenbergM

PannebakkerB

KoevoetsT

2010 Recombination and its impact on the genome of the haplodiploid parasitoid wasp Nasonia. PLoS ONE. In Press

23. DoeCQ

Chu-LaGraffQ

WrightDM

ScottMP

1991 The prospero gene specifies cell fates in the Drosophila nervous system. Cell 65 451 464

24. ShirangiTR

DufourHD

WilliamsTM

CarrollSB

2009 Rapid Evolution of Sex Pheromone-Producing Enzyme Expression in Drosophila. PLoS Biol 7(8)26 doi:10.1371/journal.pbio.1000168

25. SandersLE

ArbeitmanMA

2008 Doublesex establishes sexual dimorphism in the Drosophila central nervous system in an isoform-dependent manner by directing cell number. Dev Biol 320 378 390

26. KozmaSC

ThomasG

2002 Regulation of cell size in growth, development and human disease: PI3K, PKB and S6K. Bioessays 24 65 71

27. FraryA

NesbittCT

FraryA

GrandilloS

van der KnaapE

2000 Fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289 85 88

28. CongB

TanksleySD

2006 FW2.2 and cell cycle control in developing tomato fruit: a possible example of gene co-option in the evolution of a novel organ. Plant Mol Biol 62 867 880

29. DarlingDC

WerrenJH

1990 Biosystematics of Nasonia (Hymenoptera: Pteromalidae): Two new species reared from birds' nests in North America. Ann Ent Soc Am 83 352 370

30. GadauJ

PageRE

WerrenJH

2002 The genetic basis of the interspecific differences in wing size in Nasonia (Hymenoptera: Pteromalidae): major quantitative trait loci and epistasis. Genetics 161 673 684

31. SteinerS

HermannN

RutherJ

2006 Characterization of a female-produced courtship pheromone in the parasitoid Nasonia vitripennis. J Chem Ecol 32 1687 1702

32. WolschinF

GadauJ

2009 Deciphering proteomic signatures of early diapause in Nasonia. PLoS ONE 4 e6394 doi:10.1371/journal.pone.0006394

33. BreeuwerJAJ

WerrenJH

1995 Hybrid Breakdown Between Two Haplodiploid Species: The Role of Nuclear and Cytoplasmic Genes. Evolution 49 705 717

34. NiehuisO

JudsonAK

GadauJ

2008 Cytonuclear genic incompatibilities cause increased mortality in male F-2 hybrids of Nasonia giraulti and N. vitripennis. Genetics 178 413 426

35. ClarkME

O'HaraPF

ChawlaA

WerrenJH

2010 Behavioural and spermatogenic hybrid male breakdown in Nasonia. Heredity In press. DOI:HDY.2009.152

36. BeukeboomLW

Van den AssemJ

2002 Courtship and mating behaviour of interspecific Nasonia hybrids (Hymenoptera, Pteromalidae): A grandfather effect. Behav Genet 31 167-.177

37. VelthuisBJ

YangW

van OpijnenT

WerrenJH

2005 Genetics of female mate discrimination of heterospecific males in Nasonia (Hymenoptera, Pteromalidae). Anim Behav 69 1107 1120

38. SokalRR

RohlfFJ

1994 Biometry (3rd edition). 880p San Francisco W.H. Freeman and co

39. VosP

HogersR

BleekerM

ReijansM

van de LeeT

1995 AFLP: A new technique for DNA-fingerprinting. Nucleic Acids Res 23 4407 4414

40. LivakKJ

SchmittgenTD

2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25 402

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#