#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Elevated Levels of the Polo Kinase Cdc5 Override the Mec1/ATR Checkpoint in Budding Yeast by Acting at Different Steps of the Signaling Pathway


Checkpoints are surveillance mechanisms that constitute a barrier to oncogenesis by preserving genome integrity. Loss of checkpoint function is an early event in tumorigenesis. Polo kinases (Plks) are fundamental regulators of cell cycle progression in all eukaryotes and are frequently overexpressed in tumors. Through their polo box domain, Plks target multiple substrates previously phosphorylated by CDKs and MAPKs. In response to DNA damage, Plks are temporally inhibited in order to maintain the checkpoint-dependent cell cycle block while their activity is required to silence the checkpoint response and resume cell cycle progression. Here, we report that, in budding yeast, overproduction of the Cdc5 polo kinase overrides the checkpoint signaling induced by double strand DNA breaks (DSBs), preventing the phosphorylation of several Mec1/ATR targets, including Ddc2/ATRIP, the checkpoint mediator Rad9, and the transducer kinase Rad53/CHK2. We also show that high levels of Cdc5 slow down DSB processing in a Rad9-dependent manner, but do not prevent the binding of checkpoint factors to a single DSB. Finally, we provide evidence that Sae2, the functional ortholog of human CtIP, which regulates DSB processing and inhibits checkpoint signaling, is regulated by Cdc5. We propose that Cdc5 interferes with the checkpoint response to DSBs acting at multiple levels in the signal transduction pathway and at an early step required to resect DSB ends.


Vyšlo v časopise: Elevated Levels of the Polo Kinase Cdc5 Override the Mec1/ATR Checkpoint in Budding Yeast by Acting at Different Steps of the Signaling Pathway. PLoS Genet 6(1): e32767. doi:10.1371/journal.pgen.1000763
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1000763

Souhrn

Checkpoints are surveillance mechanisms that constitute a barrier to oncogenesis by preserving genome integrity. Loss of checkpoint function is an early event in tumorigenesis. Polo kinases (Plks) are fundamental regulators of cell cycle progression in all eukaryotes and are frequently overexpressed in tumors. Through their polo box domain, Plks target multiple substrates previously phosphorylated by CDKs and MAPKs. In response to DNA damage, Plks are temporally inhibited in order to maintain the checkpoint-dependent cell cycle block while their activity is required to silence the checkpoint response and resume cell cycle progression. Here, we report that, in budding yeast, overproduction of the Cdc5 polo kinase overrides the checkpoint signaling induced by double strand DNA breaks (DSBs), preventing the phosphorylation of several Mec1/ATR targets, including Ddc2/ATRIP, the checkpoint mediator Rad9, and the transducer kinase Rad53/CHK2. We also show that high levels of Cdc5 slow down DSB processing in a Rad9-dependent manner, but do not prevent the binding of checkpoint factors to a single DSB. Finally, we provide evidence that Sae2, the functional ortholog of human CtIP, which regulates DSB processing and inhibits checkpoint signaling, is regulated by Cdc5. We propose that Cdc5 interferes with the checkpoint response to DSBs acting at multiple levels in the signal transduction pathway and at an early step required to resect DSB ends.


Zdroje

1. HarrisonJC

HaberJE

2006 Surviving the breakup: the DNA damage checkpoint. Annu Rev Genet 40 209 235

2. HarperJW

ElledgeSJ

2007 The DNA damage response: ten years after. Mol Cell 28 739 745

3. BranzeiD

FoianiM

2008 Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol 9 297 308

4. LazzaroF

GiannattasioM

PudduF

GranataM

PellicioliA

2009 Checkpoint mechanisms at the intersection between DNA damage and repair. DNA Repair (Amst) 8 1055 1067

5. MimitouEP

SymingtonLS

2009 Nucleases and helicases take center stage in homologous recombination. Trends Biochem Sci 34 264 272

6. BartekJ

LukasJ

2007 DNA damage checkpoints: from initiation to recovery or adaptation. Curr Opin Cell Biol 19 238 245

7. ClemensonC

Marsolier-KergoatMC

2009 DNA damage checkpoint inactivation: adaptation and recovery. DNA Repair (Amst) 8 1101 1109

8. LeeSE

PellicioliA

DemeterJ

VazeMP

GaschAP

2000 Arrest, adaptation, and recovery following a chromosome double-strand break in Saccharomyces cerevisiae. Cold Spring Harb Symp Quant Biol 65 303 314

9. GalgoczyDJ

ToczyskiDP

2001 Checkpoint adaptation precedes spontaneous and damage-induced genomic instability in yeast. Mol Cell Biol 21 1710 1718

10. van VugtMA

MedemaRH

2004 Checkpoint adaptation and recovery: back with Polo after the break. Cell Cycle 3 1383 1386

11. van de WeerdtBC

MedemaRH

2006 Polo-like kinases: a team in control of the division. Cell Cycle 5 853 864

12. PellicioliA

LeeSE

LuccaC

FoianiM

HaberJE

2001 Regulation of Saccharomyces Rad53 checkpoint kinase during adaptation from DNA damage-induced G2/M arrest. Mol Cell 7 293 300

13. ToczyskiDP

GalgoczyDJ

HartwellLH

1997 CDC5 and CKII control adaptation to the yeast DNA damage checkpoint. Cell 90 1097 1106

14. VazeMB

PellicioliA

LeeSE

IraG

LiberiG

2002 Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase. Mol Cell 10 373 385

15. van VugtMA

BrasA

MedemaRH

2004 Polo-like kinase-1 controls recovery from a G2 DNA damage-induced arrest in mammalian cells. Mol Cell 15 799 811

16. SyljuasenRG

JensenS

BartekJ

LukasJ

2006 Adaptation to the ionizing radiation-induced G2 checkpoint occurs in human cells and depends on checkpoint kinase 1 and Polo-like kinase 1 kinases. Cancer Res 66 10253 10257

17. LiuX

LeiM

EriksonRL

2006 Normal cells, but not cancer cells, survive severe Plk1 depletion. Mol Cell Biol 26 2093 2108

18. LaneHA

NiggEA

1996 Antibody microinjection reveals an essential role for human polo-like kinase 1 (Plk1) in the functional maturation of mitotic centrosomes. J Cell Biol 135 1701 1713

19. LoweryDM

MohammadDH

EliaAE

YaffeMB

2004 The Polo-box domain: a molecular integrator of mitotic kinase cascades and Polo-like kinase function. Cell Cycle 3 128 131

20. SneadJL

SullivanM

LoweryDM

CohenMS

ZhangC

2007 A coupled chemical-genetic and bioinformatic approach to Polo-like kinase pathway exploration. Chem Biol 14 1261 1272

21. PeschiaroliA

DorrelloNV

GuardavaccaroD

VenereM

HalazonetisT

2006 SCFbetaTrCP-mediated degradation of Claspin regulates recovery from the DNA replication checkpoint response. Mol Cell 23 319 329

22. MamelyI

van VugtMA

SmitsVA

SempleJI

LemmensB

2006 Polo-like kinase-1 controls proteasome-dependent degradation of Claspin during checkpoint recovery. Curr Biol 16 1950 1955

23. MailandN

Bekker-JensenS

BartekJ

LukasJ

2006 Destruction of Claspin by SCFbetaTrCP restrains Chk1 activation and facilitates recovery from genotoxic stress. Mol Cell 23 307 318

24. YooHY

KumagaiA

ShevchenkoA

DunphyWG

2004 Adaptation of a DNA replication checkpoint response depends upon inactivation of Claspin by the Polo-like kinase. Cell 117 575 588

25. KeeY

KimJM

D'AndreaAD

2009 Regulated degradation of FANCM in the Fanconi anemia pathway during mitosis. Genes Dev 23 555 560

26. Bahassi elM

ConnCW

MyerDL

HenniganRF

McGowanCH

2002 Mammalian Polo-like kinase 3 (Plk3) is a multifunctional protein involved in stress response pathways. Oncogene 21 6633 6640

27. TsvetkovLM

TsekovaRT

XuX

SternDF

2005 The Plk1 Polo box domain mediates a cell cycle and DNA damage regulated interaction with Chk2. Cell Cycle 4 609 617

28. PetrinacS

GanuelasML

BonniS

NantaisJ

HudsonJW

2009 Polo-like kinase 4 phosphorylates Chk2. Cell Cycle 8 327 329

29. ChengL

HunkeL

HardyCF

1998 Cell cycle regulation of the Saccharomyces cerevisiae polo-like kinase cdc5p. Mol Cell Biol 18 7360 7370

30. SmitsVA

KlompmakerR

ArnaudL

RijksenG

NiggEA

2000 Polo-like kinase-1 is a target of the DNA damage checkpoint. Nat Cell Biol 2 672 676

31. van VugtMA

SmitsVA

KlompmakerR

MedemaRH

2001 Inhibition of Polo-like kinase-1 by DNA damage occurs in an ATM- or ATR-dependent fashion. J Biol Chem 276 41656 41660

32. AndoK

OzakiT

YamamotoH

FuruyaK

HosodaM

2004 Polo-like kinase 1 (Plk1) inhibits p53 function by physical interaction and phosphorylation. J Biol Chem 279 25549 25561

33. TsvetkovL

SternDF

2005 Phosphorylation of Plk1 at S137 and T210 is inhibited in response to DNA damage. Cell Cycle 4 166 171

34. BassermannF

FrescasD

GuardavaccaroD

BusinoL

PeschiaroliA

2008 The Cdc14B-Cdh1-Plk1 axis controls the G2 DNA-damage-response checkpoint. Cell 134 256 267

35. MacurekL

LindqvistA

LimD

LampsonMA

KlompmakerR

2008 Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery. Nature 455 119 123

36. LuLY

YuX

2009 The balance of Polo-like kinase 1 in tumorigenesis. Cell Div 4 4

37. EckerdtF

YuanJ

StrebhardtK

2005 Polo-like kinases and oncogenesis. Oncogene 24 267 276

38. TakaiN

HamanakaR

YoshimatsuJ

MiyakawaI

2005 Polo-like kinases (Plks) and cancer. Oncogene 24 287 291

39. SmithMR

WilsonML

HamanakaR

ChaseD

KungH

1997 Malignant transformation of mammalian cells initiated by constitutive expression of the polo-like kinase. Biochem Biophys Res Commun 234 397 405

40. WeichertW

DenkertC

SchmidtM

GekelerV

WolfG

2004 Polo-like kinase isoform expression is a prognostic factor in ovarian carcinoma. Br J Cancer 90 815 821

41. TokumitsuY

MoriM

TanakaS

AkazawaK

NakanoS

1999 Prognostic significance of polo-like kinase expression in esophageal carcinoma. Int J Oncol 15 687 692

42. KnechtR

OberhauserC

StrebhardtK

2000 PLK (polo-like kinase), a new prognostic marker for oropharyngeal carcinomas. Int J Cancer 89 535 536

43. KneiselL

StrebhardtK

BerndA

WolterM

BinderA

2002 Expression of polo-like kinase (PLK1) in thin melanomas: a novel marker of metastatic disease. J Cutan Pathol 29 354 358

44. YamadaS

OhiraM

HorieH

AndoK

TakayasuH

2004 Expression profiling and differential screening between hepatoblastomas and the corresponding normal livers: identification of high expression of the PLK1 oncogene as a poor-prognostic indicator of hepatoblastomas. Oncogene 23 5901 5911

45. BartekJ

LukasJ

BartkovaJ

2007 DNA damage response as an anti-cancer barrier: damage threshold and the concept of ‘conditional haploinsufficiency’. Cell Cycle 6 2344 2347

46. SanchezY

BachantJ

WangH

HuF

LiuD

1999 Control of the DNA damage checkpoint by chk1 and rad53 protein kinases through distinct mechanisms. Science 286 1166 1171

47. HuF

WangY

LiuD

LiY

QinJ

2001 Regulation of the Bub2/Bfa1 GAP complex by Cdc5 and cell cycle checkpoints. Cell 107 655 665

48. SongS

GrenfellTZ

GarfieldS

EriksonRL

LeeKS

2000 Essential function of the polo box of Cdc5 in subcellular localization and induction of cytokinetic structures. Mol Cell Biol 20 286 298

49. SongS

LeeKS

2001 A novel function of Saccharomyces cerevisiae CDC5 in cytokinesis. J Cell Biol 152 451 469

50. BartholomewCR

WooSH

ChungYS

JonesC

HardyCF

2001 Cdc5 interacts with the Wee1 kinase in budding yeast. Mol Cell Biol 21 4949 4959

51. CharlesJF

JaspersenSL

Tinker-KulbergRL

HwangL

SzidonA

1998 The Polo-related kinase Cdc5 activates and is destroyed by the mitotic cyclin destruction machinery in S. cerevisiae. Curr Biol 8 497 507

52. PellicioliA

LuccaC

LiberiG

MariniF

LopesM

1999 Activation of Rad53 kinase in response to DNA damage and its effect in modulating phosphorylation of the lagging strand DNA polymerase. EMBO J 18 6561 6572

53. PellicioliA

FoianiM

2005 Signal transduction: how rad53 kinase is activated. Curr Biol 15 R769 771

54. FioraniS

MimunG

CalecaL

PicciniD

PellicioliA

2008 Characterization of the activation domain of the Rad53 checkpoint kinase. Cell Cycle 7 493 499

55. MantieroD

ClericiM

LucchiniG

LongheseMP

2007 Dual role for Saccharomyces cerevisiae Tel1 in the checkpoint response to double-strand breaks. EMBO Rep 8 380 387

56. TohGW

LowndesNF

2003 Role of the Saccharomyces cerevisiae Rad9 protein in sensing and responding to DNA damage. Biochem Soc Trans 31 242 246

57. IraG

PellicioliA

BalijjaA

WangX

FioraniS

2004 DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature 431 1011 1017

58. LazzaroF

SapountziV

GranataM

PellicioliA

VazeM

2008 Histone methyltransferase Dot1 and Rad9 inhibit single-stranded DNA accumulation at DSBs and uncapped telomeres. EMBO J 27 1502 1512

59. UbersaxJA

WoodburyEL

QuangPN

ParazM

BlethrowJD

2003 Targets of the cyclin-dependent kinase Cdk1. Nature 425 859 864

60. HuertasP

Cortes-LedesmaF

SartoriAA

AguileraA

JacksonSP

2008 CDK targets Sae2 to control DNA-end resection and homologous recombination. Nature 455 689 692

61. KondoT

WakayamaT

NaikiT

MatsumotoK

SugimotoK

2001 Recruitment of Mec1 and Ddc1 checkpoint proteins to double-strand breaks through distinct mechanisms. Science 294 867 870

62. ZouL

ElledgeSJ

2003 Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300 1542 1548

63. LisbyM

BarlowJH

BurgessRC

RothsteinR

2004 Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118 699 713

64. Navadgi-PatilVM

BurgersPM

2009 A tale of two tails: Activation of DNA damage checkpoint kinase Mec1/ATR by the 9-1-1 clamp and by Dpb11/TopBP1. DNA Repair (Amst)

65. BaroniE

ViscardiV

Cartagena-LirolaH

LucchiniG

LongheseMP

2004 The functions of budding yeast Sae2 in the DNA damage response require Mec1- and Tel1-dependent phosphorylation. Mol Cell Biol 24 4151 4165

66. ClericiM

MantieroD

LucchiniG

LongheseMP

2006 The Saccharomyces cerevisiae Sae2 protein negatively regulates DNA damage checkpoint signalling. EMBO Rep 7 212 218

67. KimHS

VijayakumarS

RegerM

HarrisonJC

HaberJE

2008 Functional interactions between Sae2 and the Mre11 complex. Genetics 178 711 723

68. YuX

FuS

LaiM

BaerR

ChenJ

2006 BRCA1 ubiquitinates its phosphorylation-dependent binding partner CtIP. Genes Dev 20 1721 1726

69. LimboO

ChahwanC

YamadaY

de BruinRA

WittenbergC

2007 Ctp1 is a cell-cycle-regulated protein that functions with Mre11 complex to control double-strand break repair by homologous recombination. Mol Cell 28 134 146

70. YuanJ

ChenJ

2009 N terminus of CtIP is critical for homologous recombination mediated double-strand break repair. J Biol Chem

71. LloydJ

ChapmanJR

ClappertonJA

HaireLF

HartsuikerE

2009 A supramodular FHA/BRCT-repeat architecture mediates Nbs1 adaptor function in response to DNA damage. Cell 139 100 111

72. WilliamsRS

DodsonGE

LimboO

YamadaY

WilliamsJS

2009 Nbs1 flexibly tethers Ctp1 and Mre11-Rad50 to coordinate DNA double-strand break processing and repair. Cell 139 87 99

73. ChenL

NieveraCJ

LeeAY

WuX

2008 Cell cycle-dependent complex formation of BRCA1.CtIP.MRN is important for DNA double-strand break repair. J Biol Chem 283 7713 7720

74. YuX

ChenJ

2004 DNA damage-induced cell cycle checkpoint control requires CtIP, a phosphorylation-dependent binding partner of BRCA1 C-terminal domains. Mol Cell Biol 24 9478 9486

75. HuertasP

JacksonSP

2009 Human CtIP mediates cell cycle control of DNA end resection and double strand break repair. J Biol Chem 284 9558 9565

76. TrenzK

ErricoA

CostanzoV

2008 Plx1 is required for chromosomal DNA replication under stressful conditions. EMBO J 27 876 885

77. TsvetkovL

SternDF

2005 Interaction of chromatin-associated Plk1 and Mcm7. J Biol Chem 280 11943 11947

78. LongtineMS

McKenzieA3rd

DemariniDJ

ShahNG

WachA

1998 Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14 953 961

79. GyurisJ

GolemisE

ChertkovH

BrentR

1993 Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell 75 791 803

80. MillerCT

GabrielseC

ChenYC

WeinreichM

2009 Cdc7p-dbf4p regulates mitotic exit by inhibiting Polo kinase. PLoS Genet 5 e1000498 doi:10.1371/journal.pgen.1000498

81. LeeSE

MooreJK

HolmesA

UmezuK

KolodnerRD

1998 Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94 399 409

82. ClericiM

MantieroD

LucchiniG

LongheseMP

2005 The Saccharomyces cerevisiae Sae2 protein promotes resection and bridging of double strand break ends. J Biol Chem 280 38631 38638

83. ViscardiV

BonettiD

Cartagena-LirolaH

LucchiniG

LongheseMP

2007 MRX-dependent DNA damage response to short telomeres. Mol Biol Cell 18 3047 3058

84. ClericiM

MantieroD

GueriniI

LucchiniG

LongheseMP

2008 The Yku70-Yku80 complex contributes to regulate double-strand break processing and checkpoint activation during the cell cycle. EMBO Rep 9 810 818

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#