#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Co-Orientation of Replication and Transcription Preserves Genome Integrity


In many bacteria, there is a genome-wide bias towards co-orientation of replication and transcription, with essential and/or highly-expressed genes further enriched co-directionally. We previously found that reversing this bias in the bacterium Bacillus subtilis slows replication elongation, and we proposed that this effect contributes to the evolutionary pressure selecting the transcription-replication co-orientation bias. This selection might have been based purely on selection for speedy replication; alternatively, the slowed replication might actually represent an average of individual replication-disruption events, each of which is counter-selected independently because genome integrity is selected. To differentiate these possibilities and define the precise forces driving this aspect of genome organization, we generated new strains with inversions either over ∼1/4 of the chromosome or at ribosomal RNA (rRNA) operons. Applying mathematical analysis to genomic microarray snapshots, we found that replication rates vary dramatically within the inverted genome. Replication is moderately impeded throughout the inverted region, which results in a small but significant competitive disadvantage in minimal medium. Importantly, replication is strongly obstructed at inverted rRNA loci in rich medium. This obstruction results in disruption of DNA replication, activation of DNA damage responses, loss of genome integrity, and cell death. Our results strongly suggest that preservation of genome integrity drives the evolution of co-orientation of replication and transcription, a conserved feature of genome organization.


Vyšlo v časopise: Co-Orientation of Replication and Transcription Preserves Genome Integrity. PLoS Genet 6(1): e32767. doi:10.1371/journal.pgen.1000810
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1000810

Souhrn

In many bacteria, there is a genome-wide bias towards co-orientation of replication and transcription, with essential and/or highly-expressed genes further enriched co-directionally. We previously found that reversing this bias in the bacterium Bacillus subtilis slows replication elongation, and we proposed that this effect contributes to the evolutionary pressure selecting the transcription-replication co-orientation bias. This selection might have been based purely on selection for speedy replication; alternatively, the slowed replication might actually represent an average of individual replication-disruption events, each of which is counter-selected independently because genome integrity is selected. To differentiate these possibilities and define the precise forces driving this aspect of genome organization, we generated new strains with inversions either over ∼1/4 of the chromosome or at ribosomal RNA (rRNA) operons. Applying mathematical analysis to genomic microarray snapshots, we found that replication rates vary dramatically within the inverted genome. Replication is moderately impeded throughout the inverted region, which results in a small but significant competitive disadvantage in minimal medium. Importantly, replication is strongly obstructed at inverted rRNA loci in rich medium. This obstruction results in disruption of DNA replication, activation of DNA damage responses, loss of genome integrity, and cell death. Our results strongly suggest that preservation of genome integrity drives the evolution of co-orientation of replication and transcription, a conserved feature of genome organization.


Zdroje

1. MiuraA

KruegerJH

ItohS

de BoerHA

NomuraM

1981 Growth-rate-dependent regulation of ribosome synthesis in E. coli: expression of the lacZ and galK genes fused to ribosomal promoters. Cell 25 773 782

2. GourseRL

GaalT

BartlettMS

ApplemanJA

RossW

1996 rRNA transcription and growth rate-dependent regulation of ribosome synthesis in Escherichia coli. Annu Rev Microbiol 50 645 677

3. BremerH

DennisP

1996 Modulation of Chemical Composition and Other Parameters of the Cell by Growth Rate.

NeidhardtFC

CurtissRI

IngrahamJL

LinECC

LowKB

Escherichia coli and Salmonella: Cellular and Molecular Biology Washington, DC ASM Press 1553 1569

4. CooperS

HelmstetterCE

1968 Chromosome replication and the division cycle of Escherichia coli B/r. J Mol Biol 31 519 540

5. FrenchS

1992 Consequences of replication fork movement through transcription units in vivo. Science 258 1362 1365

6. PomerantzRT

O'DonnellM

2008 The replisome uses mRNA as a primer after colliding with RNA polymerase. Nature 456 762 766

7. YaoNY

O'DonnellM

2009 Replisome structure and conformational dynamics underlie fork progression past obstacles. Curr Opin Cell Biol 21 336 343

8. MirkinEV

MirkinSM

2007 Replication fork stalling at natural impediments. Microbiol Mol Biol Rev 71 13 35

9. RochaEP

2008 The organization of the bacterial genome. Annu Rev Genet 42 211 233

10. LiuB

AlbertsBM

1995 Head-on collision between a DNA replication apparatus and RNA polymerase transcription complex. Science 267 1131 1137

11. DeshpandeAM

NewlonCS

1996 DNA replication fork pause sites dependent on transcription. Science 272 1030 1033

12. Elias-ArnanzM

SalasM

1999 Resolution of head-on collisions between the transcription machinery and bacteriophage phi29 DNA polymerase is dependent on RNA polymerase translocation. Embo J 18 5675 5682

13. AzvolinskyA

GiresiPG

LiebJD

ZakianVA

2009 Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae. Mol Cell 34 722 734

14. WellingerRE

PradoF

AguileraA

2006 Replication fork progression is impaired by transcription in hyperrecombinant yeast cells lacking a functional THO complex. Mol Cell Biol 26 3327 3334

15. TrautingerBW

JaktajiRP

RusakovaE

LloydRG

2005 RNA polymerase modulators and DNA repair activities resolve conflicts between DNA replication and transcription. Mol Cell 19 247 258

16. BoubakriH

de SeptenvilleAL

VigueraE

MichelB

2009 The helicases DinG, Rep and UvrD cooperate to promote replication across transcription units in vivo. Embo J

17. BrewerBJ

1988 When polymerases collide: replication and the transcriptional organization of the E. coli chromosome. Cell 53 679 686

18. RochaEP

2004 The replication-related organization of bacterial genomes. Microbiology 150 1609 1627

19. RochaEP

DanchinA

2003 Essentiality, not expressiveness, drives gene-strand bias in bacteria. Nat Genet 34 377 378

20. GuyL

RotenCA

2004 Genometric analyses of the organization of circular chromosomes: a universal pressure determines the direction of ribosomal RNA genes transcription relative to chromosome replication. Gene 340 45 52

21. EllwoodM

NomuraM

1982 Chromosomal locations of the genes for rRNA in Escherichia coli K-12. J Bacteriol 149 458 468

22. KunstF

OgasawaraN

MoszerI

AlbertiniAM

AlloniG

1997 The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390 249 256

23. BlattnerFR

PlunkettG3rd

BlochCA

PernaNT

BurlandV

1997 The complete genome sequence of Escherichia coli K-12. Science 277 1453 1474

24. RochaE

2002 Is there a role for replication fork asymmetry in the distribution of genes in bacterial genomes? Trends Microbiol 10 393 395

25. ZeiglerDR

DeanDH

1990 Orientation of genes in the Bacillus subtilis chromosome. Genetics 125 703 708

26. BrewerBJ

FangmanWL

1988 A replication fork barrier at the 3′ end of yeast ribosomal RNA genes. Cell 55 637 643

27. PriceMN

AlmEJ

ArkinAP

2005 Interruptions in gene expression drive highly expressed operons to the leading strand of DNA replication. Nucleic Acids Res 33 3224 3234

28. HuvetM

NicolayS

TouchonM

AuditB

d'Aubenton-CarafaY

2007 Human gene organization driven by the coordination of replication and transcription. Genome Res 17 1278 1285

29. OmontN

KepesF

2004 Transcription/replication collisions cause bacterial transcription units to be longer on the leading strand of replication. Bioinformatics 20 2719 2725

30. MirkinEV

MirkinSM

2005 Mechanisms of transcription-replication collisions in bacteria. Mol Cell Biol 25 888 895

31. WangJD

BerkmenMB

GrossmanAD

2007 Genome-wide coorientation of replication and transcription reduces adverse effects on replication in Bacillus subtilis. Proc Natl Acad Sci U S A 104 5608 5613

32. PradoF

AguileraA

2005 Impairment of replication fork progression mediates RNA polII transcription-associated recombination. Embo J 24 1267 1276

33. TorresJZ

BesslerJB

ZakianVA

2004 Local chromatin structure at the ribosomal DNA causes replication fork pausing and genome instability in the absence of the S. cerevisiae DNA helicase Rrm3p. Genes Dev 18 498 503

34. ViletteD

EhrlichSD

MichelB

1996 Transcription-induced deletions in plasmid vectors: M13 DNA replication as a source of instability. Mol Gen Genet 252 398 403

35. KimN

AbdulovicAL

GealyR

LippertMJ

Jinks-RobertsonS

2007 Transcription-associated mutagenesis in yeast is directly proportional to the level of gene expression and influenced by the direction of DNA replication. DNA Repair (Amst) 6 1285 1296

36. DworkinJ

LosickR

2002 Does RNA polymerase help drive chromosome segregation in bacteria? Proc Natl Acad Sci U S A 99 14089 14094

37. RochaEP

FralickJ

VediyappanG

DanchinA

NorrisV

2003 A strand-specific model for chromosome segregation in bacteria. Mol Microbiol 49 895 903

38. EsnaultE

ValensM

EspeliO

BoccardF

2007 Chromosome structuring limits genome plasticity in Escherichia coli. PLoS Genet 3 e226

39. LesterlinC

PagesC

DubarryN

DasguptaS

CornetF

2008 Asymmetry of chromosome Replichores renders the DNA translocase activity of FtsK essential for cell division and cell shape maintenance in Escherichia coli. PLoS Genet 4 e1000288

40. BerkmenMB

GrossmanAD

2007 Subcellular positioning of the origin region of the Bacillus subtilis chromosome is independent of sequences within oriC, the site of replication initiation, and the replication initiator DnaA. Mol Microbiol 63 150 165

41. MendelsonNH

GrossJD

1967 Characterization of a temperature-sensitive mutant of Bacillus subtilis defective in deoxyribonucleic acid replication. J Bacteriol 94 1603 1608

42. KaramataD

GrossJD

1970 Isolation and genetic analysis of temperature-sensitive mutants of B. subtilis defective in DNA synthesis. Mol Gen Genet 108 277 287

43. BreierAM

WeierHU

CozzarelliNR

2005 Independence of replisomes in Escherichia coli chromosomal replication. Proc Natl Acad Sci U S A 102 3942 3947

44. WangJD

SandersGM

GrossmanAD

2007 Nutritional control of elongation of DNA replication by (p)ppGpp. Cell 128 865 875

45. SimmonsLA

GrossmanAD

WalkerGC

2007 Replication is required for the RecA localization response to DNA damage in Bacillus subtilis. Proc Natl Acad Sci U S A 104 1360 1365

46. BrittonRA

Kuster-SchockE

AuchtungTA

GrossmanAD

2007 SOS induction in a subpopulation of structural maintenance of chromosome (Smc) mutant cells in Bacillus subtilis. J Bacteriol 189 4359 4366

47. MaughanH

GaleanoB

NicholsonWL

2004 Novel rpoB mutations conferring rifampin resistance on Bacillus subtilis: global effects on growth, competence, sporulation, and germination. J Bacteriol 186 2481 2486

48. InghamCJ

FurneauxPA

2000 Mutations in the ss subunit of the Bacillus subtilis RNA polymerase that confer both rifampicin resistance and hypersensitivity to NusG. Microbiology 146 Pt 12 3041 3049

49. RoscheWA

FosterPL

2000 Determining mutation rates in bacterial populations. Methods 20 4 17

50. TodaT

TanakaT

ItayaM

1996 A method to invert DNA segments of the Bacillus subtilis 168 genome by recombination between two homologous sequences. Biosci Biotechnol Biochem 60 773 778

51. SegallA

MahanMJ

RothJR

1988 Rearrangement of the bacterial chromosome: forbidden inversions. Science 241 1314 1318

52. RebolloJE

FrancoisV

LouarnJM

1988 Detection and possible role of two large nondivisible zones on the Escherichia coli chromosome. Proc Natl Acad Sci U S A 85 9391 9395

53. KonradEB

1977 Method for the isolation of Escherichia coli mutants with enhanced recombination between chromosomal duplications. J Bacteriol 130 167 172

54. HillCW

GrayJA

1988 Effects of chromosomal inversion on cell fitness in Escherichia coli K-12. Genetics 119 771 778

55. CampoN

DiasMJ

Daveran-MingotML

RitzenthalerP

Le BourgeoisP

2004 Chromosomal constraints in Gram-positive bacteria revealed by artificial inversions. Mol Microbiol 51 511 522

56. LesterlinC

MercierR

BoccardF

BarreFX

CornetF

2005 Roles for replichores and macrodomains in segregation of the Escherichia coli chromosome. EMBO Rep 6 557 562

57. EisenJA

HeidelbergJF

WhiteO

SalzbergSL

2000 Evidence for symmetric chromosomal inversions around the replication origin in bacteria. Genome Biol 1 RESEARCH0011

58. SegreD

DelunaA

ChurchGM

KishonyR

2005 Modular epistasis in yeast metabolism. Nat Genet 37 77 83

59. ElenaSF

LenskiRE

1997 Test of synergistic interactions among deleterious mutations in bacteria. Nature 390 395 398

60. ChandlerMG

PritchardRH

1975 The effect of gene concentration and relative gene dosage on gene output in Escherichia coli. Mol Gen Genet 138 127 141

61. SullivanNL

MarquisKA

RudnerDZ

2009 Recruitment of SMC by ParB-parS organizes the origin region and promotes efficient chromosome segregation. Cell 137 697 707

62. GruberS

ErringtonJ

2009 Recruitment of condensin to replication origin regions by ParB/SpoOJ promotes chromosome segregation in B. subtilis. Cell 137 685 696

63. LinDC

GrossmanAD

1998 Identification and characterization of a bacterial chromosome partitioning site. Cell 92 675 685

64. MurrayHD

SchneiderDA

GourseRL

2003 Control of rRNA expression by small molecules is dynamic and nonredundant. Mol Cell 12 125 134

65. KrasilnikovaMM

SamadashwilyGM

KrasilnikovAS

MirkinSM

1998 Transcription through a simple DNA repeat blocks replication elongation. Embo J 17 5095 5102

66. Gomez-GonzalezB

Felipe-AbrioI

AguileraA

2009 The S-Phase checkpoint is required to respond to R-loops accumulated in THO mutants. Mol Cell Biol

67. OlavarrietaL

HernandezP

KrimerDB

SchvartzmanJB

2002 DNA knotting caused by head-on collision of transcription and replication. J Mol Biol 322 1 6

68. LiuLF

WangJC

1987 Supercoiling of the DNA template during transcription. Proc Natl Acad Sci U S A 84 7024 7027

69. PossozC

FilipeSR

GraingeI

SherrattDJ

2006 Tracking of controlled Escherichia coli replication fork stalling and restart at repressor-bound DNA in vivo. Embo J 25 2596 2604

70. YasbinRE

1977 DNA repair in Bacillus subtilis. I. The presence of an inducible system. Mol Gen Genet 153 211 218

71. SimmonsLA

GoranovAI

KobayashiH

DaviesBW

YuanDS

2009 Comparison of responses to double-strand breaks between Escherichia coli and Bacillus subtilis reveals different requirements for SOS induction. J Bacteriol 191 1152 1161

72. KuzminovA

1995 Collapse and repair of replication forks in Escherichia coli. Mol Microbiol 16 373 384

73. BidnenkoV

EhrlichSD

MichelB

2002 Replication fork collapse at replication terminator sequences. Embo J 21 3898 3907

74. CouturierE

RochaEP

2006 Replication-associated gene dosage effects shape the genomes of fast-growing bacteria but only for transcription and translation genes. Mol Microbiol 59 1506 1518

75. SavesonCJ

LovettST

1997 Enhanced deletion formation by aberrant DNA replication in Escherichia coli. Genetics 146 457 470

76. PonderRG

FonvilleNC

RosenbergSM

2005 A switch from high-fidelity to error-prone DNA double-strand break repair underlies stress-induced mutation. Mol Cell 19 791 804

77. JiangQ

KarataK

WoodgateR

CoxMM

GoodmanMF

2009 The active form of DNA polymerase V is UmuD'2C-RecA-ATP. Nature 460 359 363

78. ReimersJM

SchmidtKH

LongacreA

ReschkeDK

WrightBE

2004 Increased transcription rates correlate with increased reversion rates in leuB and argH Escherichia coli auxotrophs. Microbiology 150 1457 1466

79. WrightBE

LongacreA

ReimersJM

1999 Hypermutation in derepressed operons of Escherichia coli K12. Proc Natl Acad Sci U S A 96 5089 5094

80. RossC

PybusC

Pedraza-ReyesM

SungHM

YasbinRE

2006 Novel role of mfd: effects on stationary-phase mutagenesis in Bacillus subtilis. J Bacteriol 188 7512 7520

81. AguileraA

Gomez-GonzalezB

2008 Genome instability: a mechanistic view of its causes and consequences. Nat Rev Genet 9 204 217

82. CohenSE

GodoyVG

WalkerGC

2009 Transcriptional modulator NusA interacts with translesion DNA polymerases in Escherichia coli. J Bacteriol 191 665 672

83. VasanthaN

FreeseE

1980 Enzyme changes during Bacillus subtilis sporulation caused by deprivation of guanine nucleotides. J Bacteriol 144 1119 1125

84. HarwoodCR

CuttingSM

1990 Molecular Biological Methods for Bacillus subtilis Chichester, U.K. Wiley

85. DeanDR

HochJA

AronsonAI

1977 Alteration of the Bacillus subtilis glutamine synthetase results in overproduction of the enzyme. J Bacteriol 131 981 987

86. YasbinRE

FieldsPI

AndersenBJ

1980 Properties of Bacillus subtilis 168 derivatives freed of their natural prophages. Gene 12 155 159

87. AuchtungJM

LeeCA

MonsonRE

LehmanAP

GrossmanAD

2005 Regulation of a Bacillus subtilis mobile genetic element by intercellular signaling and the global DNA damage response. Proc Natl Acad Sci U S A 102 12554 12559

88. WuLJ

ErringtonJ

2002 A large dispersed chromosomal region required for chromosome segregation in sporulating cells of Bacillus subtilis. Embo J 21 4001 4011

89. YoungmanP

PothH

GreenB

YorkK

OlmedoG

1989 Methods for genetic manipulation, cloning, and functional analysis of sporulation genes in Bacillus subtilis.

SmithI

SlepeckyR

SetlowP

Regulation of procaryotic development Washington, D.C. American Society for Microbiology 65 87

90. ItayaM

KondoK

TanakaT

1989 A neomycin resistance gene cassette selectable in a single copy state in the Bacillus subtilis chromosome. Nucleic Acids Res 17 4410

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#