#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Depsipeptide Romidepsin Reverses HIV-1 Latency


One proposed way of curing HIV is to activate virus transcription and kill latently infected cells while the presence of antiretroviral therapy prevents spreading the infection. Induction of global T cell activation by mitogenic or other potent activators effectively reverses HIV-1 from latency ex vivo, but such compounds are generally too toxic for clinical use. Therefore, investigating the capacity of small molecule latency reversing agents to induce production of virus without causing global T cell activation has been a top research priority for scientists in recent years. In the present clinical trial, we demonstrate that significant viral reactivation can be safely induced using the depsipeptide romidepsin (HDAC inhibitor) in long-term suppressed HIV-1 individuals on antiretroviral therapy. Following each romidepsin infusion, we observed clear increases in lymphocyte H3 acetylation, HIV-1 transcription, and plasma HIV-1 RNA. Importantly, this reversal of HIV-1 latency could be measured using standard clinical assays for detection of plasma HIV-1 RNA. Furthermore, romidepsin did not alter the proportion of HIV-specific T cells or inhibit T cell cytokine production which is critically important for future trials combining HDAC inhibitors with interventions (e.g. therapeutic HIV-1 vaccination) designed to enhance killing of latently infected cells.


Vyšlo v časopise: The Depsipeptide Romidepsin Reverses HIV-1 Latency. PLoS Pathog 11(9): e32767. doi:10.1371/journal.ppat.1005142
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1005142

Souhrn

One proposed way of curing HIV is to activate virus transcription and kill latently infected cells while the presence of antiretroviral therapy prevents spreading the infection. Induction of global T cell activation by mitogenic or other potent activators effectively reverses HIV-1 from latency ex vivo, but such compounds are generally too toxic for clinical use. Therefore, investigating the capacity of small molecule latency reversing agents to induce production of virus without causing global T cell activation has been a top research priority for scientists in recent years. In the present clinical trial, we demonstrate that significant viral reactivation can be safely induced using the depsipeptide romidepsin (HDAC inhibitor) in long-term suppressed HIV-1 individuals on antiretroviral therapy. Following each romidepsin infusion, we observed clear increases in lymphocyte H3 acetylation, HIV-1 transcription, and plasma HIV-1 RNA. Importantly, this reversal of HIV-1 latency could be measured using standard clinical assays for detection of plasma HIV-1 RNA. Furthermore, romidepsin did not alter the proportion of HIV-specific T cells or inhibit T cell cytokine production which is critically important for future trials combining HDAC inhibitors with interventions (e.g. therapeutic HIV-1 vaccination) designed to enhance killing of latently infected cells.


Zdroje

1. Li TS, Tubiana R, Katlama C, Calvez V, Ait Mohand H, Autran B. Long-lasting recovery in CD4 T-cell function and viral-load reduction after highly active antiretroviral therapy in advanced HIV-1 disease. Lancet. 1998;351(9117):1682–6. Epub 1998/09/12. S0140673697102914 [pii]. 9734884.

2. Stevenson M, Stanwick TL, Dempsey MP, Lamonica CA. HIV-1 replication is controlled at the level of T cell activation and proviral integration. Embo J. 1990;9(5):1551–60. 2184033; PubMed Central PMCID: PMC551849.

3. Karn J, Stoltzfus CM. Transcriptional and Posttranscriptional Regulation of HIV-1 Gene Expression. Cold Spring Harb Perspect Med. 2012;2(2):a006916. Epub 2012/02/23. doi: 10.1101/cshperspect.a006916 22355797; PubMed Central PMCID: PMC3281586.

4. Pierson T, McArthur J, Siliciano RF. Reservoirs for HIV-1: mechanisms for viral persistence in the presence of antiviral immune responses and antiretroviral therapy. Annu Rev Immunol. 2000;18:665–708. Epub 2000/06/03. doi: 10.1146/annurev.immunol.18.1.665 10837072.

5. Finzi D, Hermankova M, Pierson T, Carruth LM, Buck C, Chaisson RE, et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science. 1997;278(5341):1295–300. Epub 1997/11/21. 9360927.

6. Chun TW, Carruth L, Finzi D, Shen X, DiGiuseppe JA, Taylor H, et al. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature. 1997;387(6629):183–8. Epub 1997/05/08. doi: 10.1038/387183a0 9144289.

7. Whitney JB, Hill AL, Sanisetty S, Penaloza-MacMaster P, Liu J, Shetty M, et al. Rapid seeding of the viral reservoir prior to SIV viraemia in rhesus monkeys. Nature. 2014;512(7512):74–7. doi: 10.1038/nature13594 25042999; PubMed Central PMCID: PMC4126858.

8. Wagner TA, McLaughlin S, Garg K, Cheung CY, Larsen BB, Styrchak S, et al. HIV latency. Proliferation of cells with HIV integrated into cancer genes contributes to persistent infection. Science. 2014;345(6196):570–3. doi: 10.1126/science.1256304 25011556; PubMed Central PMCID: PMC4230336.

9. Maldarelli F, Wu X, Su L, Simonetti FR, Shao W, Hill S, et al. HIV latency. Specific HIV integration sites are linked to clonal expansion and persistence of infected cells. Science. 2014;345(6193):179–83. doi: 10.1126/science.1254194 24968937; PubMed Central PMCID: PMC4262401.

10. Eisele E, Siliciano RF. Redefining the viral reservoirs that prevent HIV-1 eradication. Immunity. 2012;37(3):377–88. Epub 2012/09/25. doi: 10.1016/j.immuni.2012.08.010 22999944.

11. Deeks SG. HIV: Shock and kill. Nature. 2012;487(7408):439–40. Epub 2012/07/28. doi: 10.1038/487439a 22836995.

12. Laird GM, Bullen CK, Rosenbloom DI, Martin AR, Hill AL, Durand CM, et al. Ex vivo analysis identifies effective HIV-1 latency-reversing drug combinations. J Clin Invest. 2015;125(5):1901–12. doi: 10.1172/JCI80142 25822022.

13. Bullen CK, Laird GM, Durand CM, Siliciano JD, Siliciano RF. New ex vivo approaches distinguish effective and ineffective single agents for reversing HIV-1 latency in vivo. Nat Med. 2014;20(4):425–9. doi: 10.1038/nm.3489 24658076; PubMed Central PMCID: PMC3981911.

14. Prins JM, Jurriaans S, van Praag RM, Blaak H, van Rij R, Schellekens PT, et al. Immuno-activation with anti-CD3 and recombinant human IL-2 in HIV-1-infected patients on potent antiretroviral therapy. Aids. 1999;13(17):2405–10. 10597782.

15. Rasmussen TA, Schmeltz Sogaard O, Brinkmann C, Wightman F, Lewin SR, Melchjorsen J, et al. Comparison of HDAC inhibitors in clinical development: Effect on HIV production in latently infected cells and T-cell activation. Hum Vaccin Immunother. 2013;9(5). Epub 2013/02/02. 23370291.

16. Bosque A, Planelles V. Induction of HIV-1 latency and reactivation in primary memory CD4+ T cells. Blood. 2009;113(1):58–65. Epub 2008/10/14. doi: 10.1182/blood-2008-07-168393 18849485; PubMed Central PMCID: PMC2614643.

17. Richman DD, Margolis DM, Delaney M, Greene WC, Hazuda D, Pomerantz RJ. The challenge of finding a cure for HIV infection. Science. 2009;323(5919):1304–7. Epub 2009/03/07. doi: 10.1126/science.1165706 19265012.

18. Van Lint C, Emiliani S, Ott M, Verdin E. Transcriptional activation and chromatin remodeling of the HIV-1 promoter in response to histone acetylation. Embo J. 1996;15(5):1112–20. Epub 1996/03/01. 8605881; PubMed Central PMCID: PMC450009.

19. Ylisastigui L, Archin NM, Lehrman G, Bosch RJ, Margolis DM. Coaxing HIV-1 from resting CD4 T cells: histone deacetylase inhibition allows latent viral expression. Aids. 2004;18(8):1101–8. Epub 2004/05/29. 15166525.

20. Wightman F, Ellenberg P, Churchill M, Lewin SR. HDAC inhibitors in HIV. Immunol Cell Biol. 2012;90(1):47–54. Epub 2011/11/16. doi: 10.1038/icb.2011.95 22083528.

21. Shan L, Deng K, Shroff NS, Durand CM, Rabi SA, Yang HC, et al. Stimulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of latent viral reservoir after virus reactivation. Immunity. 2012;36(3):491–501. Epub 2012/03/13. doi: 10.1016/j.immuni.2012.01.014 22406268.

22. Archin NM, Liberty AL, Kashuba AD, Choudhary SK, Kuruc JD, Crooks AM, et al. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature. 2012;487(7408):482–5. Epub 2012/07/28. doi: 10.1038/nature11286 22837004.

23. Archin NM, Bateson R, Tripathy MK, Crooks AM, Yang KH, Dahl NP, et al. HIV-1 expression within resting CD4+ T cells after multiple doses of vorinostat. J Infect Dis. 2014;210(5):728–35. doi: 10.1093/infdis/jiu155 24620025; PubMed Central PMCID: PMC4148603.

24. Elliott JH, Wightman F, Solomon A, Ghneim K, Ahlers J, Cameron MJ, et al. Activation of HIV Transcription with Short-Course Vorinostat in HIV-Infected Patients on Suppressive Antiretroviral Therapy. PLoS Pathog. 2014;10(10):e1004473. doi: 10.1371/journal.ppat.1004473 25393648; PubMed Central PMCID: PMC4231123.

25. Rasmussen TA, Tolstrup M, Brinkmann CR, Olesen R, Erikstrup C, Solomon A, et al. Panobinostat, a histone deacetylase inhibitor, for latent-virus reactivation in HIV-infected patients on suppressive antiretroviral therapy: a phase 1/2, single group, clinical trial. The Lancet HIV. 2014;1(1):e13–e21.

26. Wei DG, Chiang V, Fyne E, Balakrishnan M, Barnes T, Graupe M, et al. Histone deacetylase inhibitor romidepsin induces HIV expression in CD4 T cells from patients on suppressive antiretroviral therapy at concentrations achieved by clinical dosing. PLoS Pathog. 2014;10(4):e1004071. doi: 10.1371/journal.ppat.1004071 24722454; PubMed Central PMCID: PMC3983056.

27. Jones RB, O'Connor R, Mueller S, Foley M, Szeto GL, Karel D, et al. Histone deacetylase inhibitors impair the elimination of HIV-infected cells by cytotoxic T-lymphocytes. PLoS Pathog. 2014;10(8):e1004287. doi: 10.1371/journal.ppat.1004287 25122219; PubMed Central PMCID: PMC4133386.

28. Pollard RB, Rockstroh JK, Pantaleo G, Asmuth DM, Peters B, Lazzarin A, et al. Safety and efficacy of the peptide-based therapeutic vaccine for HIV-1, Vacc-4x: a phase 2 randomised, double-blind, placebo-controlled trial. Lancet Infect Dis. 2014;14(4):291–300. doi: 10.1016/S1473-3099(13)70343-8 24525316.

29. Pasternak AO, Lukashov VV, Berkhout B. Cell-associated HIV RNA: a dynamic biomarker of viral persistence. Retrovirology. 2013;10:41. doi: 10.1186/1742-4690-10-41 23587031; PubMed Central PMCID: PMC3637491.

30. Stramer SL, Krysztof DE, Brodsky JP, Fickett TA, Reynolds B, Dodd RY, et al. Comparative analysis of triplex nucleic acid test assays in United States blood donors. Transfusion. 2013;53(10 Pt 2):2525–37. doi: 10.1111/trf.12178 23550838.

31. Palmer S, Wiegand AP, Maldarelli F, Bazmi H, Mican JM, Polis M, et al. New real-time reverse transcriptase-initiated PCR assay with single-copy sensitivity for human immunodeficiency virus type 1 RNA in plasma. Journal of clinical microbiology. 2003;41(10):4531–6. Epub 2003/10/09. 14532178; PubMed Central PMCID: PMC254331.

32. Mohammadi P, di Iulio J, Munoz M, Martinez R, Bartha I, Cavassini M, et al. Dynamics of HIV latency and reactivation in a primary CD4+ T cell model. PLoS Pathog. 2014;10(5):e1004156. doi: 10.1371/journal.ppat.1004156 24875931; PubMed Central PMCID: PMC4038609.

33. Falkenberg KJ, Johnstone RW. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nature reviews Drug discovery. 2014;13(9):673–91. doi: 10.1038/nrd4360 25131830.

34. Schmudde M, Friebe E, Sonnemann J, Beck JF, Broker BM. Histone deacetylase inhibitors prevent activation of tumour-reactive NK cells and T cells but do not interfere with their cytolytic effector functions. Cancer Lett. 2010;295(2):173–81. doi: 10.1016/j.canlet.2010.02.024 20346580.

35. Deng K, Pertea M, Rongvaux A, Wang L, Durand CM, Ghiaur G, et al. Broad CTL response is required to clear latent HIV-1 due to dominance of escape mutations. Nature. 2015;517(7534):381–5. doi: 10.1038/nature14053 25561180.

36. McGraw AL. Romidepsin for the treatment of T-cell lymphomas. American journal of health-system pharmacy: AJHP: official journal of the American Society of Health-System Pharmacists. 2013;70(13):1115–22. doi: 10.2146/ajhp120163 23784158.

37. Shakespear MR, Halili MA, Irvine KM, Fairlie DP, Sweet MJ. Histone deacetylases as regulators of inflammation and immunity. Trends Immunol. 2011;32(7):335–43. doi: 10.1016/j.it.2011.04.001 21570914.

38. Analysis of peripheral T-cell lymphoma (PTCL) subtype by race and geography using the Comprehensive Oncology Measures for Peripheral T-Cell Lymphoma Treatment (COMPLETE) dataset. Clinical advances in hematology & oncology: H&O. 2014;12(2 Suppl 5):8. 24852789.

39. Laille E, Patel M, Jones SF, Burris HA, Infante J, Lemech C, et al. Evaluation of CYP3A-mediated drug-drug Interactions with romidepsin in patients with advanced cancer. J Clin Pharmacol. 2015. doi: 10.1002/jcph.560 26053962.

40. Administration USFaD. Drug Development and Drug Interactions 2015 [cited 2015 21 July]. Available from: http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentResources.

41. Chomont N, El-Far M, Ancuta P, Trautmann L, Procopio FA, Yassine-Diab B, et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med. 2009;15(8):893–900. Epub 2009/06/23. doi: 10.1038/nm.1972 19543283; PubMed Central PMCID: PMC2859814.

42. Koelsch KK, Boesecke C, McBride K, Gelgor L, Fahey P, Natarajan V, et al. Impact of treatment with raltegravir during primary or chronic HIV infection on RNA decay characteristics and the HIV viral reservoir. Aids. 2011;25(17):2069–78. doi: 10.1097/QAD.0b013e32834b9658 21860347.

43. Pasternak AO, Adema KW, Bakker M, Jurriaans S, Berkhout B, Cornelissen M, et al. Highly sensitive methods based on seminested real-time reverse transcription-PCR for quantitation of human immunodeficiency virus type 1 unspliced and multiply spliced RNA and proviral DNA. J Clin Microbiol. 2008;46(7):2206–11. doi: 10.1128/JCM.00055-08 18463204; PubMed Central PMCID: PMC2446885.

44. Hu Y, Smyth GK. ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. Journal of immunological methods. 2009;347(1–2):70–8. doi: 10.1016/j.jim.2009.06.008 19567251.

45. Laird GM, Eisele EE, Rabi SA, Lai J, Chioma S, Blankson JN, et al. Rapid Quantification of the Latent Reservoir for HIV-1 Using a Viral Outgrowth Assay. PLoS Pathog. 2013;9(5):e1003398. Epub 2013/06/06. doi: 10.1371/journal.ppat.1003398 23737751; PubMed Central PMCID: PMC3667757.

46. Siliciano JD, Siliciano RF. Enhanced culture assay for detection and quantitation of latently infected, resting CD4+ T-cells carrying replication-competent virus in HIV-1-infected individuals. Methods Mol Biol. 2005;304:3–15. Epub 2005/08/03. doi: 10.1385/1-59259-907-9:003 16061962.

47. Buzon MJ, Sun H, Li C, Shaw A, Seiss K, Ouyang Z, et al. HIV-1 persistence in CD4+ T cells with stem cell-like properties. Nat Med. 2014;20(2):139–42. doi: 10.1038/nm.3445 24412925; PubMed Central PMCID: PMC3959167.

48. Wei X, Decker JM, Liu H, Zhang Z, Arani RB, Kilby JM, et al. Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob Agents Chemother. 2002;46(6):1896–905. 12019106; PubMed Central PMCID: PMC127242.

49. Rigby L, Muscat A, Ashley D, Algar E. Methods for the analysis of histone H3 and H4 acetylation in blood. Epigenetics. 2012;7(8):875–82. Epub 2012/07/10. doi: 10.4161/epi.20983 22772164; PubMed Central PMCID: PMC3427283.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2015 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#