#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Experimental Malaria in Pregnancy Induces Neurocognitive Injury in Uninfected Offspring via a C5a-C5a Receptor Dependent Pathway


A growing body of evidence has established the importance of the in utero environment on neurodevelopment and long-term cognitive and behavioral outcomes. These data suggest factors that disrupt the tightly regulated in utero environment can modify normal neurodevelopmental processes. Approximately 125 million pregnancies worldwide are at risk of malaria infection every year. However the impact of in utero exposure to MIP on fetal neurodevelopment is unknown. Here we use a mouse model of malaria in pregnancy to examine the impact of maternal malaria exposure on neurocognitive outcomes in offspring. We observed impaired learning and memory and depressive-like behavior in malaria-exposed offspring that were neither congenitally infected nor low birth weight. These neurocognitive impairments were associated with decreased tissue levels of neurotransmitters in regions of the brain linked to the observed deficits. Disruption of maternal C5a complement receptor signaling restored the levels of neurotransmitters and rescued the associated cognitive phenotype observed in malaria-exposed offspring. This study provides the first evidence implicating a causal link between pre-natal exposure to malaria, complement signaling and subsequent neurocognitive impairment in offspring.


Vyšlo v časopise: Experimental Malaria in Pregnancy Induces Neurocognitive Injury in Uninfected Offspring via a C5a-C5a Receptor Dependent Pathway. PLoS Pathog 11(9): e32767. doi:10.1371/journal.ppat.1005140
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1005140

Souhrn

A growing body of evidence has established the importance of the in utero environment on neurodevelopment and long-term cognitive and behavioral outcomes. These data suggest factors that disrupt the tightly regulated in utero environment can modify normal neurodevelopmental processes. Approximately 125 million pregnancies worldwide are at risk of malaria infection every year. However the impact of in utero exposure to MIP on fetal neurodevelopment is unknown. Here we use a mouse model of malaria in pregnancy to examine the impact of maternal malaria exposure on neurocognitive outcomes in offspring. We observed impaired learning and memory and depressive-like behavior in malaria-exposed offspring that were neither congenitally infected nor low birth weight. These neurocognitive impairments were associated with decreased tissue levels of neurotransmitters in regions of the brain linked to the observed deficits. Disruption of maternal C5a complement receptor signaling restored the levels of neurotransmitters and rescued the associated cognitive phenotype observed in malaria-exposed offspring. This study provides the first evidence implicating a causal link between pre-natal exposure to malaria, complement signaling and subsequent neurocognitive impairment in offspring.


Zdroje

1. Dellicour S, Tatem AJ, Guerra CA, Snow RW, ter Kuile FO (2010) Quantifying the number of pregnancies at risk of malaria in 2007: a demographic study. PLoS Med 7: e1000221. doi: 10.1371/journal.pmed.1000221 20126256

2. Rogerson SJ, Pollina E, Getachew A, Tadesse E, Lema VM, et al. (2003) Placental monocyte infiltrates in response to Plasmodium falciparum malaria infection and their association with adverse pregnancy outcomes. Am J Trop Med Hyg 68: 115–119.

3. Ismail MR, Ordi J, Menendez C, Ventura PJ, Aponte JJ, et al. (2000) Placental pathology in malaria: a histological, immunohistochemical, and quantitative study. Hum Pathol 31: 85–93. 10665918

4. Guyatt HL, Snow RW (2001) Malaria in pregnancy as an indirect cause of infant mortality in sub-Saharan Africa. Trans R Soc Trop Med Hyg 95: 569–576. 11816423

5. Conroy AL, Silver KL, Zhong K, Rennie M, Ward P, et al. (2013) Complement activation and the resulting placental vascular insufficiency drives fetal growth restriction associated with placental malaria. Cell Host Microbe 13: 215–226. doi: 10.1016/j.chom.2013.01.010 23414761

6. Umbers AJ, Aitken EH, Rogerson SJ (2011) Malaria in pregnancy: small babies, big problem. Trends Parasitol 27: 168–175. doi: 10.1016/j.pt.2011.01.007 21377424

7. Ehrnthaller C, Ignatius A, Gebhard F, Huber-Lang M (2011) New insights of an old defense system: structure, function, and clinical relevance of the complement system. Mol Med 17: 317–329. doi: 10.2119/molmed.2010.00149 21046060

8. Ward PA (2004) The dark side of C5a in sepsis. Nat Rev Immunol 4: 133–142. 15040586

9. Guo RF, Ward PA (2005) Role of C5a in inflammatory responses. Annu Rev Immunol 23: 821–852. 15771587

10. Silver KL, Higgins SJ, McDonald CR, Kain KC (2010) Complement driven innate immune response to malaria: fuelling severe malarial diseases. Cell Microbiol 12: 1036–1045. doi: 10.1111/j.1462-5822.2010.01492.x 20545944

11. Conroy A, Serghides L, Finney C, Owino SO, Kumar S, et al. (2009) C5a enhances dysregulated inflammatory and angiogenic responses to malaria in vitro: potential implications for placental malaria. PLoS One 4: e4953. doi: 10.1371/journal.pone.0004953 19308263

12. Conroy AL, McDonald CR, Kain KC (2012) Malaria in pregnancy: diagnosing infection and identifying fetal risk. Expert Rev Anti Infect Ther 10: 1331–1342. doi: 10.1586/eri.12.123 23241190

13. Patel SN, Berghout J, Lovegrove FE, Ayi K, Conroy A, et al. (2008) C5 deficiency and C5a or C5aR blockade protects against cerebral malaria. J Exp Med 205: 1133–1143. doi: 10.1084/jem.20072248 18426986

14. Kim H, Erdman LK, Lu Z, Serghides L, Zhong K, et al. (2014) Functional roles for C5a and C5aR but not C5L2 in the pathogenesis of human and experimental cerebral malaria. Infect Immun 82: 371–379. doi: 10.1128/IAI.01246-13 24191300

15. Holers VM, Girardi G, Mo L, Guthridge JM, Molina H, et al. (2002) Complement C3 activation is required for antiphospholipid antibody-induced fetal loss. J Exp Med 195: 211–220. 11805148

16. Salmon JE, Girardi G, Holers VM (2002) Complement activation as a mediator of antiphospholipid antibody induced pregnancy loss and thrombosis. Ann Rheum Dis 61 Suppl 2: ii46–50. 12379621

17. Girardi G, Salmon JB (2003) The role of complement in pregnancy and fetal loss. Autoimmunity 36: 19–26. 12765467

18. Banadakoppa M, Chauhan MS, Havemann D, Balakrishnan M, Dominic JS, et al. (2014) Spontaneous abortion is associated with elevated systemic C5a and reduced mRNA of complement inhibitory proteins in placenta. Clin Exp Immunol 177: 743–749. doi: 10.1111/cei.12371 24802103

19. Denny KJ, Coulthard LG, Finnell RH, Callaway LK, Taylor SM, et al. (2013) Elevated complement factor C5a in maternal and umbilical cord plasma in preeclampsia. J Reprod Immunol 97: 211–216. doi: 10.1016/j.jri.2012.11.006 23415845

20. Chu Y, Jin X, Parada I, Pesic A, Stevens B, et al. (2010) Enhanced synaptic connectivity and epilepsy in C1q knockout mice. Proc Natl Acad Sci U S A 107: 7975–7980. doi: 10.1073/pnas.0913449107 20375278

21. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, et al. (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131: 1164–1178. 18083105

22. Pedroni SM, Gonzalez JM, Wade J, Jansen MA, Serio A, et al. (2014) Complement inhibition and statins prevent fetal brain cortical abnormalities in a mouse model of preterm birth. Biochim Biophys Acta 1842: 107–115. doi: 10.1016/j.bbadis.2013.10.011 24184716

23. Stephan AH, Barres BA, Stevens B (2012) The complement system: an unexpected role in synaptic pruning during development and disease. Annu Rev Neurosci 35: 369–389. doi: 10.1146/annurev-neuro-061010-113810 22715882

24. Meyer UF, J. Schedlowski M. Yee B.K. (2006) Immunological stress at the maternal-foetal interface: a link between neurodevelopment and adult psychopathology Brain Behaviour and Immunology 20: 378–388.

25. Bilbo SD, Schwarz JM (2009) Early-life programming of later-life brain and behavior: a critical role for the immune system. Front Behav Neurosci 3: 14. doi: 10.3389/neuro.08.014.2009 19738918

26. Allen MC (2008) Neurodevelopmental outcomes of preterm infants. Curr Opin Neurol 21: 123–128. doi: 10.1097/WCO.0b013e3282f88bb4 18317268

27. Procianoy RS, Koch MS, Silveira RC (2009) Neurodevelopmental outcome of appropriate and small for gestational age very low birth weight infants. J Child Neurol 24: 788–794. doi: 10.1177/0883073808331087 19289693

28. Neres R, Marinho CR, Goncalves LA, Catarino MB, Penha-Goncalves C (2008) Pregnancy outcome and placenta pathology in Plasmodium berghei ANKA infected mice reproduce the pathogenesis of severe malaria in pregnant women. PLoS One 3: e1608. doi: 10.1371/journal.pone.0001608 18270595

29. Francis BM, Kim J, Barakat ME, Fraenkl S, Yucel YH, et al. (2012) Object recognition memory and BDNF expression are reduced in young TgCRND8 mice. Neurobiol Aging 33: 555–563. doi: 10.1016/j.neurobiolaging.2010.04.003 20447730

30. Francis BM, Yang J, Hajderi E, Brown ME, Michalski B, et al. (2012) Reduced tissue levels of noradrenaline are associated with behavioral phenotypes of the TgCRND8 mouse model of Alzheimer's disease. Neuropsychopharmacology 37: 1934–1944. doi: 10.1038/npp.2012.40 22491352

31. Cryan JF, Holmes A (2005) The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov 4: 775–790. 16138108

32. Dorr AE, Lerch JP, Spring S, Kabani N, Henkelman RM (2008) High resolution three-dimensional brain atlas using an average magnetic resonance image of 40 adult C57Bl/6J mice. Neuroimage 42: 60–69. doi: 10.1016/j.neuroimage.2008.03.037 18502665

33. Nyakas C, Felszeghy K, Szabo R, Keijser JN, Luiten PG, et al. (2009) Neuroprotective effects of vinpocetine and its major metabolite cis-apovincaminic acid on NMDA-induced neurotoxicity in a rat entorhinal cortex lesion model. CNS Neurosci Ther 15: 89–99. doi: 10.1111/j.1755-5949.2009.00078.x 19492990

34. Lonart G, Tang X, Simsek-Duran F, Machida M, Sanford LD (2008) The role of active zone protein Rab3 interacting molecule 1 alpha in the regulation of norepinephrine release, response to novelty, and sleep. Neuroscience 154: 821–831. doi: 10.1016/j.neuroscience.2008.03.047 18495360

35. Rennie MY, Detmar J, Whiteley KJ, Jurisicova A, Adamson SL, et al. (2012) Expansion of the fetoplacental vasculature in late gestation is strain dependent in mice. Am J Physiol Heart Circ Physiol 302: H1261–1273. doi: 10.1152/ajpheart.00776.2011 22268107

36. Watson DJ, Loiseau F, Ingallinesi M, Millan MJ, Marsden CA, et al. (2012) Selective blockade of dopamine D3 receptors enhances while D2 receptor antagonism impairs social novelty discrimination and novel object recognition in rats: a key role for the prefrontal cortex. Neuropsychopharmacology 37: 770–786. doi: 10.1038/npp.2011.254 22030711

37. Vuckovic MG, Wood RI, Holschneider DP, Abernathy A, Togasaki DM, et al. (2008) Memory, mood, dopamine, and serotonin in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury. Neurobiol Dis 32: 319–327. doi: 10.1016/j.nbd.2008.07.015 18718537

38. You IJ, Jung YH, Kim MJ, Kwon SH, Hong SI, et al. (2012) Alterations in the emotional and memory behavioral phenotypes of transient receptor potential vanilloid type 1-deficient mice are mediated by changes in expression of 5-HT(1)A, GABA(A), and NMDA receptors. Neuropharmacology 62: 1034–1043. doi: 10.1016/j.neuropharm.2011.10.013 22074644

39. Rittirsch D, Flierl MA, Nadeau BA, Day DE, Huber-Lang M, et al. (2008) Functional roles for C5a receptors in sepsis. Nat Med 14: 551–557. doi: 10.1038/nm1753 18454156

40. Chapleau CA, Larimore JL, Theibert A, Pozzo-Miller L (2009) Modulation of dendritic spine development and plasticity by BDNF and vesicular trafficking: fundamental roles in neurodevelopmental disorders associated with mental retardation and autism. J Neurodev Disord 1: 185–196. doi: 10.1007/s11689-009-9027-6 19966931

41. Ren-Patterson RF, Cochran LW, Holmes A, Sherrill S, Huang SJ, et al. (2005) Loss of brain-derived neurotrophic factor gene allele exacerbates brain monoamine deficiencies and increases stress abnormalities of serotonin transporter knockout mice. J Neurosci Res 79: 756–771. 15672416

42. Meyer U, Nyffeler M, Engler A, Urwyler A, Schedlowski M, et al. (2006) The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology. J Neurosci 26: 4752–4762. 16672647

43. Golan HM, Lev V, Hallak M, Sorokin Y, Huleihel M (2005) Specific neurodevelopmental damage in mice offspring following maternal inflammation during pregnancy. Neuropharmacology 48: 903–917. 15829260

44. Ozawa K, Hashimoto K, Kishimoto T, Shimizu E, Ishikura H, et al. (2006) Immune activation during pregnancy in mice leads to dopaminergic hyperfunction and cognitive impairment in the offspring: a neurodevelopmental animal model of schizophrenia. Biol Psychiatry 59: 546–554. 16256957

45. Garay PA, McAllister AK (2010) Novel roles for immune molecules in neural development: implications for neurodevelopmental disorders. Front Synaptic Neurosci 2: 136. doi: 10.3389/fnsyn.2010.00136 21423522

46. Veerhuis R, Nielsen HM, Tenner AJ (2011) Complement in the brain. Mol Immunol 48: 1592–1603. doi: 10.1016/j.molimm.2011.04.003 21546088

47. McDonald CR, Elphinstone RE, Kain KC (2013) The impact of placental malaria on neurodevelopment of exposed infants: a role for the complement system? Trends Parasitol 29: 213–219. doi: 10.1016/j.pt.2013.03.005 23562777

48. Woodruff TM, Nandakumar KS, Tedesco F (2011) Inhibiting the C5-C5a receptor axis. Mol Immunol 48: 1631–1642. doi: 10.1016/j.molimm.2011.04.014 21549429

49. Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, et al. (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28: 264–278. doi: 10.1523/JNEUROSCI.4178-07.2008 18171944

50. Perez-Alcazar M, Daborg J, Stokowska A, Wasling P, Bjorefeldt A, et al. (2014) Altered cognitive performance and synaptic function in the hippocampus of mice lacking C3. Exp Neurol 253: 154–164. doi: 10.1016/j.expneurol.2013.12.013 24378428

51. Harvey CW (2004) Norepinephrine and dopamine as learning signals Neural Plasticity 11: 191–204. 15656268

52. Nagai T, Takuma K, Kamei H, Ito Y, Nakamichi N, et al. (2007) Dopamine D1 receptors regulate protein synthesis-dependent long-term recognition memory via extracellular signal-regulated kinase 1/2 in the prefrontal cortex. Learn Mem 14: 117–125. 17337702

53. Lu P, Mamiya T, Lu L, Mouri A, Niwa M, et al. (2010) Silibinin attenuates cognitive deficits and decreases of dopamine and serotonin induced by repeated methamphetamine treatment. Behav Brain Res 207: 387–393. doi: 10.1016/j.bbr.2009.10.024 19857526

54. Peng WH, Lo KL, Lee YH, Hung TH, Lin YC (2007) Berberine produces antidepressant-like effects in the forced swim test and in the tail suspension test in mice. Life Sci 81: 933–938. 17804020

55. Tian JW, Jiang WL, Zhong Y, Meng Q, Gai Y, et al. (2011) Preclinical pharmacology of TP1, a novel potent triple reuptake inhibitor with antidepressant properties. Neuroscience 196: 124–130. doi: 10.1016/j.neuroscience.2011.08.064 21925241

56. Falls WA (2002) Fear-potentiated startle in mice. Curr Protoc Neurosci Chapter 8: Unit 8 11B.

57. Vicario-Abejon C, Owens D, McKay R, Segal M (2002) Role of neurotrophins in central synapse formation and stabilization. Nat Rev Neurosci 3: 965–974. 12461553

58. Koponen E, Rantamaki T, Voikar V, Saarelainen T, MacDonald E, et al. (2005) Enhanced BDNF signaling is associated with an antidepressant-like behavioral response and changes in brain monoamines. Cell Mol Neurobiol 25: 973–980. 16392030

59. Carmeliet P (2003) Blood vessels and nerves: common signals, pathways and diseases. Nat Rev Genet 4: 710–720. 12951572

60. Langer HF, Chung KJ, Orlova VV, Choi EY, Kaul S, et al. (2010) Complement-mediated inhibition of neovascularization reveals a point of convergence between innate immunity and angiogenesis. Blood 116: 4395–4403. doi: 10.1182/blood-2010-01-261503 20625009

61. Girardi G, Yarilin D, Thurman JM, Holers VM, Salmon JE (2006) Complement activation induces dysregulation of angiogenic factors and causes fetal rejection and growth restriction. J Exp Med 203: 2165–2175. 16923853

62. Leitner K, Al Shammary M, McLane M, Johnston MV, Elovitz MA, et al. (2014) IL-1 receptor blockade prevents fetal cortical brain injury but not preterm birth in a mouse model of inflammation-induced preterm birth and perinatal brain injury. Am J Reprod Immunol 71: 418–426. doi: 10.1111/aji.12216 24592965

63. Elovitz MA, Brown AG, Breen K, Anton L, Maubert M, et al. (2011) Intrauterine inflammation, insufficient to induce parturition, still evokes fetal and neonatal brain injury. Int J Dev Neurosci 29: 663–671. doi: 10.1016/j.ijdevneu.2011.02.011 21382466

64. Gallagher D, Norman AA, Woodard CL, Yang G, Gauthier-Fisher A, et al. (2013) Transient maternal IL-6 mediates long-lasting changes in neural stem cell pools by deregulating an endogenous self-renewal pathway. Cell Stem Cell 13: 564–576. doi: 10.1016/j.stem.2013.10.002 24209760

65. Desai M, ter Kuile FO, Nosten F, McGready R, Asamoa K, et al. (2007) Epidemiology and burden of malaria in pregnancy. Lancet Infect Dis 7: 93–104. 17251080

66. Genoux D, Haditsch U, Knobloch M, Michalon A, Storm D, et al. (2002) Protein phosphatase 1 is a molecular constraint on learning and memory. Nature 418: 970–975. 12198546

67. Lerch JP, Sled JG, Henkelman RM (2011) MRI phenotyping of genetically altered mice. Methods Mol Biol 711: 349–361. doi: 10.1007/978-1-61737-992-5_17 21279611

68. Cahill LS, Laliberte CL, Ellegood J, Spring S, Gleave JA, et al. (2012) Preparation of fixed mouse brains for MRI. Neuroimage 60: 933–939. doi: 10.1016/j.neuroimage.2012.01.100 22305951

69. Dorr A, Sled JG, Kabani N (2007) Three-dimensional cerebral vasculature of the CBA mouse brain: a magnetic resonance imaging and micro computed tomography study. Neuroimage 35: 1409–1423. 17369055

70. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, et al. (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55: 611–622. doi: 10.1373/clinchem.2008.112797 19246619

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2015 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#