#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Experimental Evolution of an RNA Virus in Wild Birds: Evidence for Host-Dependent Impacts on Population Structure and Competitive Fitness


Viruses are constantly emerging into new areas and pose significant challenges to public health. Chikungunya and West Nile viruses (WNV), both mosquito-borne RNA viruses, are quintessential examples of how increased globalization has facilitated the expansion of viruses into new territories. Rapid evolution of both of these agents has contributed to their rapid spread and health burden. Thus, characterizing how selection shapes zoonotic RNA viruses in their natural hosts is important to understand their emergence. As an ecological generalist able to infect hundreds of bird species, WNV is an excellent tool to study how different animal hosts can differentially drive virus evolution. We examined the genetic composition and fitness of WNV produced during replication in wild-caught American crows, house sparrows and American robins, species that range in mortality following WNV infection (crows the highest, robins the lowest). We demonstrate host-dependent effects on WNV population structure and fitness. Our study provides insights on how different virus-animal interactions can influence the success of a virus in the next host and ultimately the success of virus emergence into new host systems.


Vyšlo v časopise: Experimental Evolution of an RNA Virus in Wild Birds: Evidence for Host-Dependent Impacts on Population Structure and Competitive Fitness. PLoS Pathog 11(5): e32767. doi:10.1371/journal.ppat.1004874
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004874

Souhrn

Viruses are constantly emerging into new areas and pose significant challenges to public health. Chikungunya and West Nile viruses (WNV), both mosquito-borne RNA viruses, are quintessential examples of how increased globalization has facilitated the expansion of viruses into new territories. Rapid evolution of both of these agents has contributed to their rapid spread and health burden. Thus, characterizing how selection shapes zoonotic RNA viruses in their natural hosts is important to understand their emergence. As an ecological generalist able to infect hundreds of bird species, WNV is an excellent tool to study how different animal hosts can differentially drive virus evolution. We examined the genetic composition and fitness of WNV produced during replication in wild-caught American crows, house sparrows and American robins, species that range in mortality following WNV infection (crows the highest, robins the lowest). We demonstrate host-dependent effects on WNV population structure and fitness. Our study provides insights on how different virus-animal interactions can influence the success of a virus in the next host and ultimately the success of virus emergence into new host systems.


Zdroje

1. Li Q, Zhou L, Zhou M, Chen Z, Li F, et al. (2014) Epidemiology of human infections with avian influenza A(H7N9) virus in China. N Engl J Med 370: 520–532. doi: 10.1056/NEJMoa1304617 23614499

2. Gire SK, Goba A, Andersen KG, Sealfon RS, Park DJ, et al. (2014) Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak. Science 345: 1369–1372. doi: 10.1126/science.1259657 25214632

3. Weaver SC (2014) Arrival of chikungunya virus in the new world: prospects for spread and impact on public health. PLoS Negl Trop Dis 8: e2921. doi: 10.1371/journal.pntd.0002921 24967777

4. Kramer LD, Styer LM, Ebel GD (2008) A global perspective on the epidemiology of West Nile virus. Annu Rev Entomol 53: 61–81. 17645411

5. Ebel GD, Carricaburu J, Young D, Bernard KA, Kramer LD (2004) Genetic and phenotypic variation of West Nile virus in New York, 2000–2003. Am J Trop Med Hyg 71: 493–500. 15516648

6. Tsetsarkin KA, Vanlandingham DL, McGee CE, Higgs S (2007) A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog 3: e201. 18069894

7. Vignuzzi M, Stone JK, Arnold JJ, Cameron CE, Andino R (2006) Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 439: 344–348. 16327776

8. Farci P, Strazzera R, Alter HJ, Farci S, Degioannis D, et al. (2002) Early changes in hepatitis C viral quasispecies during interferon therapy predict the therapeutic outcome. Proc Natl Acad Sci U S A 99: 3081–3086. 11880647

9. Essajee SM, Pollack H, Rochford G, Oransky I, Krasinski K, et al. (2000) Early changes in quasispecies repertoire in HIV-infected infants: correlation with disease progression. AIDS Res Hum Retroviruses 16: 1949–1957. 11153077

10. Davis CT, Ebel GD, Lanciotti RS, Brault AC, Guzman H, et al. (2005) Phylogenetic analysis of North American West Nile virus isolates, 2001–2004: evidence for the emergence of a dominant genotype. Virology 342: 252–265. 16137736

11. Jerzak GV, Bernard K, Kramer LD, Shi PY, Ebel GD (2007) The West Nile virus mutant spectrum is host-dependant and a determinant of mortality in mice. Virology 360: 469–476. 17134731

12. Jerzak G, Bernard KA, Kramer LD, Ebel GD (2005) Genetic variation in West Nile virus from naturally infected mosquitoes and birds suggests quasispecies structure and strong purifying selection. Journal of General Virology 86: 2175–2183. 16033965

13. Brackney DE, Beane JE, Ebel GD (2009) RNAi targeting of West Nile virus in mosquito midguts promotes virus diversification. PLoS Pathog 5: e1000502. doi: 10.1371/journal.ppat.1000502 19578437

14. Deardorff ER, Fitzpatrick KA, Jerzak GV, Shi PY, Kramer LD, et al. (2011) West Nile virus experimental evolution in vivo and the trade-off hypothesis. Plos Pathogens 7: e1002335. doi: 10.1371/journal.ppat.1002335 22102808

15. Bernard KA, Maffei JG, Jones SA, Kauffman EB, Ebel G, et al. (2001) West Nile virus infection in birds and mosquitoes, New York State, 2000. Emerg Infect Dis 7: 679–685. 11585532

16. Komar N, Langevin S, Hinten S, Nemeth N, Edwards E, et al. (2003) Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerging Infectious Diseases 9: 311–322. 12643825

17. Pesko KN, Fitzpatrick KA, Ryan EM, Shi PY, Zhang B, et al. (2012) Internally deleted WNV genomes isolated from exotic birds in New Mexico: Function in cells, mosquitoes, and mice. Virology 427: 10–17. doi: 10.1016/j.virol.2012.01.028 22365325

18. Brault AC, Huang CY, Langevin SA, Kinney RM, Bowen RA, et al. (2007) A single positively selected West Nile viral mutation confers increased virogenesis in American crows. Nat Genet 39: 1162–1166. 17694056

19. Brault AC, Langevin SA, Bowen RA, Panella NA, Biggerstaff BJ, et al. (2004) Differential virulence of West Nile strains for American crows. Emerging Infectious Diseases 10: 2161–2168. 15663854

20. Dawson JR, Stone WB, Ebel GD, Young DS, Galinski DS, et al. (2007) Crow deaths caused by West Nile virus during winter. Emerging Infectious Diseases 13: 1912–1914. doi: 10.3201/eid1312.070413 18258045

21. Langevin SA, Brault AC, Panella NA, Bowen RA, Komar N (2005) Variation in virulence of West Nile virus strains for house sparrows (Passer domesticus). American Journal of Tropical Medicine and Hygiene 72: 99–102. 15728874

22. Komar N, Panella NA, Langevin SA, Brault AC, Amador M, et al. (2005) Avian hosts for West Nile virus in St. Tammany Parish, Louisiana, 2002. American Journal of Tropical Medicine and Hygiene 73: 1031–1037. 16354808

23. VanDalen KK, Hall JS, Clark L, McLean RG, Smeraski C (2013) West Nile virus infection in American Robins: new insights on dose response. Plos One 8: e68537. doi: 10.1371/journal.pone.0068537 23844218

24. Kilpatrick AM, Kramer LD, Jones MJ, Marra PP, Daszak P (2006) West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. Plos Biology 4: 606–610.

25. Shi PY, Tilgner M, Lo MK, Kent KA, Bernard KA (2002) Infectious cDNA clone of the epidemic west nile virus from New York City. J Virol 76: 5847–5856. 12021317

26. Duggal NK, Bosco-Lauth A, Bowen RA, Wheeler SS, Reisen WK, et al. (2014) Evidence for co-evolution of West Nile Virus and house sparrows in North America. PLoS Negl Trop Dis 8: e3262. doi: 10.1371/journal.pntd.0003262 25357248

27. Parameswaran P, Charlebois P, Tellez Y, Nunez A, Ryan EM, et al. (2012) Genome-Wide Patterns of Intrahuman Dengue Virus Diversity Reveal Associations with Viral Phylogenetic Clade and Interhost Diversity. Journal of Virology 86: 8546–8558. doi: 10.1128/JVI.00736-12 22647702

28. Perez-Ramirez E, Llorente F, Jimenez-Clavero MA (2014) Experimental infections of wild birds with West Nile virus. Viruses 6: 752–781. doi: 10.3390/v6020752 24531334

29. Samuel MA, Diamond MS (2005) Alpha/beta interferon protects against lethal West Nile virus infection by restricting cellular tropism and enhancing neuronal survival. Journal of Virology 79: 13350–13361. 16227257

30. Keller BC, Fredericksen BL, Samuel MA, Mock RE, Mason PW, et al. (2006) Resistance to alpha/beta interferon is a determinant of West Nile virus replication fitness and virulence. Journal of Virology 80: 9424–9434. 16973548

31. Brinton MA (2014) Replication Cycle and Molecular Biology of the West Nile Virus. Viruses-Basel 6: 13–53.

32. Jenkins GM, Rambaut A, Pybus OG, Holmes EC (2002) Rates of molecular evolution in RNA viruses: A quantitative phylogenetic analysis. Journal of Molecular Evolution 54: 156–165. 11821909

33. Holmes EC (2003) Patterns of intra- and interhost nonsynonymous variation reveal strong purifying selection in dengue virus. Journal of Virology 77: 11296–11298. 14512579

34. Li DS, Lott WB, Lowry K, Jones A, Thu HM, et al. (2011) Defective Interfering Viral Particles in Acute Dengue Infections. Plos One 6.

35. Aaskov J, Buzacott K, Thu HM, Lowry K, Holmes EC (2006) Long-term transmission of defective RNA viruses in humans and Aedes mosquitoes. Science 311: 236–238. 16410525

36. Ke R, Aaskov J, Holmes EC, Lloyd-Smith JO (2013) Phylodynamic analysis of the emergence and epidemiological impact of transmissible defective dengue viruses. Plos Pathogens 9: e1003193. doi: 10.1371/journal.ppat.1003193 23468631

37. Froissart R, Wilke CO, Montville R, Remold SK, Chao L, et al. (2004) Co-infection weakens selection against epistatic mutations in RNA viruses. Genetics 168: 9–19. 15454523

38. Garcia-Arriaza J, Manrubia SC, Toja M, Domingo E, Escarmis C (2004) Evolutionary transition toward defective RNAs that are infectious by complementation. Journal of Virology 78: 11678–11685. 15479809

39. Stern A, Bianco S, Yeh MT, Wright C, Butcher K, et al. (2014) Costs and benefits of mutational robustness in RNA viruses. Cell Rep 8: 1026–1036. doi: 10.1016/j.celrep.2014.07.011 25127138

40. Ebel GD, Dupuis AP 2nd, Ngo K, Nicholas D, Kauffman E, et al. (2001) Partial genetic characterization of West Nile virus strains, New York State, 2000. Emerg Infect Dis 7: 650–653. 11585527

41. Langevin SA, Bowen RA, Reisen WK, Andrade CC, Ramey WN, et al. (2014) Host competence and helicase activity differences exhibited by West Nile viral variants expressing NS3-249 amino acid polymorphisms. PLoS One 9: e100802. doi: 10.1371/journal.pone.0100802 24971589

42. Styer LM, Kent KA, Albright RG, Bennett CJ, Kramer LD, et al. (2007) Mosquitoes inoculate high doses of west nile virus as they probe and feed on live hosts. Plos Pathogens 3: 1262–1270. 17941708

43. Hall GS, Little DP (2007) Relative quantitation of virus population size in mixed genotype infections using sequencing chromatograms. Journal of Virological Methods 146: 22–28. 17640742

44. Fitzpatrick KA, Deardorff ER, Pesko K, Brackney DE, Zhang B, et al. (2010) Population variation of West Nile virus confers a host-specific fitness benefit in mosquitoes. Virology 404: 89–95. doi: 10.1016/j.virol.2010.04.029 20552731

45. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29: 644–U130. doi: 10.1038/nbt.1883 21572440

46. Lee WP, Stromberg MP, Ward A, Stewart C, Garrison EP, et al. (2014) MOSAIK: a hash-based algorithm for accurate next-generation sequencing short-read mapping. Plos One 9: e90581. doi: 10.1371/journal.pone.0090581 24599324

47. Yang X, Charlebois P, Macalalad A, Henn MR, Zody MC (2013) V-Phaser 2: variant inference for viral populations. BMC Genomics 14: 674. doi: 10.1186/1471-2164-14-674 24088188

48. Guo Y, Li J, Li CI, Long J, Samuels DC, et al. (2012) The effect of strand bias in Illumina short-read sequencing data. Bmc Genomics 13: 666. doi: 10.1186/1471-2164-13-666 23176052

49. Gregori J, Salicru M, Domingo E, Sanchez A, Esteban JI, et al. (2014) Inference with viral quasispecies diversity indices: clonal and NGS approaches. Bioinformatics.

50. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, et al. (2012) VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 22: 568–576. doi: 10.1101/gr.129684.111 22300766

51. Topfer A, Zagordi O, Prabhakaran S, Roth V, Halperin E, et al. (2013) Probabilistic Inference of Viral Quasispecies Subject to Recombination. Journal of Computational Biology 20: 113–123. doi: 10.1089/cmb.2012.0232 23383997

52. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452. doi: 10.1093/bioinformatics/btp187 19346325

53. Nei M, Gojobori T (1986) Simple Methods for Estimating the Numbers of Synonymous and Nonsynonymous Nucleotide Substitutions. Mol Biol Evol 3: 418–426. 3444411

54. Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133: 693–709. 8454210

55. Fay JC, Wu CI (2000) Hitchhiking under positive Darwinian selection. Genetics 155: 1405–1413. 10880498

56. Fumagalli M, Vieira FG, Korneliussen TS, Linderoth T, Huerta-Sanchez E, et al. (2013) Quantifying Population Genetic Differentiation from Next-Generation Sequencing Data. Genetics 195: 979-+. doi: 10.1534/genetics.113.154740 23979584

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2015 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#