#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Influenza A Virus Assembly Intermediates Fuse in the Cytoplasm


Influenza A viruses, containing eight single stranded RNA segments, cause seasonal epidemics and occasional pandemics. Reassortment of the influenza viral genome in co-infected cells confers an evolutionary advantage for the virus, and can result in viruses with pandemic potential like the 2009 pandemic H1N1 and 2013 H7N9 virus. Replication of the viral genome occurs in the nucleus of the host cell and the progeny viral RNA (vRNA) segments must be transported to the plasma membrane for budding. The dynamics of vRNA assembly into progeny virions remains unknown. We used novel techniques to visualize the 3D-localization of four distinct vRNA segments in an infected cell and a fluorescent virus to visualize vRNA transport during a productive infection to determine where, when and how assembly occurs. Our data suggest that vRNA segments are exported from the nucleus as subcomplexes that undergo additional assembly en route to the plasma membrane through dynamic fusion events of vRNA-containing cytoplasmic foci. These observations have broad implications for understanding the intracellular requirements behind reassortment of influenza viruses and may lead to the development of new antiviral targets.


Vyšlo v časopise: Influenza A Virus Assembly Intermediates Fuse in the Cytoplasm. PLoS Pathog 10(3): e32767. doi:10.1371/journal.ppat.1003971
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1003971

Souhrn

Influenza A viruses, containing eight single stranded RNA segments, cause seasonal epidemics and occasional pandemics. Reassortment of the influenza viral genome in co-infected cells confers an evolutionary advantage for the virus, and can result in viruses with pandemic potential like the 2009 pandemic H1N1 and 2013 H7N9 virus. Replication of the viral genome occurs in the nucleus of the host cell and the progeny viral RNA (vRNA) segments must be transported to the plasma membrane for budding. The dynamics of vRNA assembly into progeny virions remains unknown. We used novel techniques to visualize the 3D-localization of four distinct vRNA segments in an infected cell and a fluorescent virus to visualize vRNA transport during a productive infection to determine where, when and how assembly occurs. Our data suggest that vRNA segments are exported from the nucleus as subcomplexes that undergo additional assembly en route to the plasma membrane through dynamic fusion events of vRNA-containing cytoplasmic foci. These observations have broad implications for understanding the intracellular requirements behind reassortment of influenza viruses and may lead to the development of new antiviral targets.


Zdroje

1. Estimates of deaths associated with seasonal influenza — United States, 1976–2007. MMWR Morbidity and mortality weekly report 59: 1057–1062.

2. Fields BN, Knipe DM, Howley PM (2013) Fields virology. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins Health. p. p.

3. GartenRJ, DavisCT, RussellCA, ShuB, LindstromS, et al. (2009) Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 325: 197–201.

4. LiuD, ShiW, ShiY, WangD, XiaoH, et al. (2013) Origin and diversity of novel avian influenza A H7N9 viruses causing human infection: phylogenetic, structural, and coalescent analyses. Lancet 381: 1926–1932.

5. HutchinsonEC, von KirchbachJC, GogJR, DigardP (2010) Genome packaging in influenza A virus. The Journal of general virology 91: 313–328.

6. BruceEA, StuartA, McCaffreyMW, DigardP (2012) Role of the Rab11 pathway in negative-strand virus assembly. Biochemical Society transactions 40: 1409–1415.

7. AmorimMJ, BruceEA, ReadEK, FoegleinA, MahenR, et al. (2011) A Rab11- and microtubule-dependent mechanism for cytoplasmic transport of influenza A virus viral RNA. Journal of virology 85: 4143–4156.

8. BruceEA, DigardP, StuartAD (2010) The Rab11 pathway is required for influenza A virus budding and filament formation. Journal of virology 84: 5848–5859.

9. EisfeldAJ, KawakamiE, WatanabeT, NeumannG, KawaokaY (2011) RAB11A is essential for transport of the influenza virus genome to the plasma membrane. Journal of virology 85: 6117–6126.

10. NodaT, SagaraH, YenA, TakadaA, KidaH, et al. (2006) Architecture of ribonucleoprotein complexes in influenza A virus particles. Nature 439: 490–492.

11. NodaT, SugitaY, AoyamaK, HiraseA, KawakamiE, et al. (2012) Three-dimensional analysis of ribonucleoprotein complexes in influenza A virus. Nature communications 3: 639.

12. ChouYY, HeatonNS, GaoQ, PaleseP, SingerR, et al. (2013) Colocalization of Different Influenza Viral RNA Segments in the Cytoplasm before Viral Budding as Shown by Single-molecule Sensitivity FISH Analysis. PLoS pathogens 9: e1003358.

13. FournierE, MoulesV, EssereB, PaillartJC, SirbatJD, et al. (2012) A supramolecular assembly formed by influenza A virus genomic RNA segments. Nucleic acids research 40: 2197–2209.

14. DuhautSD, DimmockNJ (2002) Defective segment 1 RNAs that interfere with production of infectious influenza A virus require at least 150 nucleotides of 5′ sequence: evidence from a plasmid-driven system. The Journal of general virology 83: 403–411.

15. GavazziC, IselC, FournierE, MoulesV, CavalierA, et al. (2013) An in vitro network of intermolecular interactions between viral RNA segments of an avian H5N2 influenza A virus: comparison with a human H3N2 virus. Nucleic acids research 41: 1241–1254.

16. FournierE, MoulesV, EssereB, PaillartJC, SirbatJD, et al. (2012) Interaction network linking the human H3N2 influenza A virus genomic RNA segments. Vaccine 30: 7359–7367.

17. ChouYY, VafabakhshR, DoganayS, GaoQ, HaT, et al. (2012) One influenza virus particle packages eight unique viral RNAs as shown by FISH analysis. Proceedings of the National Academy of Sciences of the United States of America 109: 9101–9106.

18. GaoQ, LowenAC, WangTT, PaleseP (2010) A nine-segment influenza a virus carrying subtype H1 and H3 hemagglutinins. Journal of virology 84: 8062–8071.

19. LiF, FengL, PanW, DongZ, LiC, et al. (2010) Generation of replication-competent recombinant influenza A viruses carrying a reporter gene harbored in the neuraminidase segment. Journal of virology 84: 12075–12081.

20. ManicassamyB, ManicassamyS, Belicha-VillanuevaA, PisanelliG, PulendranB, et al. (2010) Analysis of in vivo dynamics of influenza virus infection in mice using a GFP reporter virus. Proceedings of the National Academy of Sciences of the United States of America 107: 11531–11536.

21. AvilovSV, MoisyD, MunierS, SchraidtO, NaffakhN, et al. (2012) Replication-competent influenza A virus that encodes a split-green fluorescent protein-tagged PB2 polymerase subunit allows live-cell imaging of the virus life cycle. Journal of virology 86: 1433–1448.

22. BlakeleyBD, ChapmanAM, McNaughtonBR (2012) Split-superpositive GFP reassembly is a fast, efficient, and robust method for detecting protein-protein interactions in vivo. Molecular bioSystems 8: 2036–2040.

23. LalondeS, EhrhardtDW, FrommerWB (2005) Shining light on signaling and metabolic networks by genetically encoded biosensors. Current opinion in plant biology 8: 574–581.

24. MaglieryTJ, WilsonCG, PanW, MishlerD, GhoshI, et al. (2005) Detecting protein-protein interactions with a green fluorescent protein fragment reassembly trap: scope and mechanism. Journal of the American Chemical Society 127: 146–157.

25. ZinchukV, ZinchukO, OkadaT (2007) Quantitative colocalization analysis of multicolor confocal immunofluorescence microscopy images: pushing pixels to explore biological phenomena. Acta histochemica et cytochemica 40: 101–111.

26. SubbaraoEK, LondonW, MurphyBR (1993) A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. Journal of virology 67: 1761–1764.

27. FukuyamaS, KawaokaY (2011) The pathogenesis of influenza virus infections: the contributions of virus and host factors. Current opinion in immunology 23: 481–486.

28. NaffakhN, TomoiuA, Rameix-WeltiMA, van der WerfS (2008) Host restriction of avian influenza viruses at the level of the ribonucleoproteins. Annual review of microbiology 62: 403–424.

29. NeumannG, KawaokaY (2006) Host range restriction and pathogenicity in the context of influenza pandemic. Emerging infectious diseases 12: 881–886.

30. FodorE, CrowM, MingayLJ, DengT, SharpsJ, et al. (2002) A single amino acid mutation in the PA subunit of the influenza virus RNA polymerase inhibits endonucleolytic cleavage of capped RNAs. Journal of virology 76: 8989–9001.

31. YuanP, BartlamM, LouZ, ChenS, ZhouJ, et al. (2009) Crystal structure of an avian influenza polymerase PA(N) reveals an endonuclease active site. Nature 458: 909–913.

32. DiasA, BouvierD, CrepinT, McCarthyAA, HartDJ, et al. (2009) The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature 458: 914–918.

33. FodorE, SmithM (2004) The PA subunit is required for efficient nuclear accumulation of the PB1 subunit of the influenza A virus RNA polymerase complex. Journal of virology 78: 9144–9153.

34. Dos Santos AfonsoE, EscriouN, LeclercqI, van der WerfS, NaffakhN (2005) The generation of recombinant influenza A viruses expressing a PB2 fusion protein requires the conservation of a packaging signal overlapping the coding and noncoding regions at the 5′ end of the PB2 segment. Virology 341: 34–46.

35. EltonD, Simpson-HolleyM, ArcherK, MedcalfL, HallamR, et al. (2001) Interaction of the influenza virus nucleoprotein with the cellular CRM1-mediated nuclear export pathway. Journal of virology 75: 408–419.

36. MomoseF, KikuchiY, KomaseK, MorikawaY (2007) Visualization of microtubule-mediated transport of influenza viral progeny ribonucleoprotein. Microbes and infection/Institut Pasteur 9: 1422–1433.

37. WatanabeK, TakizawaN, KatohM, HoshidaK, KobayashiN, et al. (2001) Inhibition of nuclear export of ribonucleoprotein complexes of influenza virus by leptomycin B. Virus research 77: 31–42.

38. WuY, GhitaniA, ChristensenR, SantellaA, DuZ, et al. (2011) Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America 108: 17708–17713.

39. HuangF, WatsonE, DempseyC, SuhJ (2013) Real-time particle tracking for studying intracellular trafficking of pharmaceutical nanocarriers. Methods in molecular biology 991: 211–223.

40. ChenH, YangJ, LowPS, ChengJX (2008) Cholesterol level regulates endosome motility via Rab proteins. Biophysical journal 94: 1508–1520.

41. ShinyaK, EbinaM, YamadaS, OnoM, KasaiN, et al. (2006) Avian flu: influenza virus receptors in the human airway. Nature 440: 435–436.

42. van RielD, MunsterVJ, de WitE, RimmelzwaanGF, FouchierRA, et al. (2006) H5N1 Virus Attachment to Lower Respiratory Tract. Science 312: 399.

43. GabrielG, HerwigA, KlenkHD (2008) Interaction of polymerase subunit PB2 and NP with importin alpha1 is a determinant of host range of influenza A virus. PLoS pathogens 4: e11.

44. LiZ, ChenH, JiaoP, DengG, TianG, et al. (2005) Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. Journal of virology 79: 12058–12064.

45. HerfstS, SchrauwenEJ, LinsterM, ChutinimitkulS, de WitE, et al. (2012) Airborne transmission of influenza A/H5N1 virus between ferrets. Science 336: 1534–1541.

46. ImaiM, WatanabeT, HattaM, DasSC, OzawaM, et al. (2012) Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486: 420–428.

47. LuX, ShiY, ZhangW, ZhangY, QiJ, et al. (2013) Structure and receptor-binding properties of an airborne transmissible avian influenza A virus hemagglutinin H5 (VN1203mut). Protein & cell 4: 502–511.

48. KawaokaY, KraussS, WebsterRG (1989) Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. Journal of virology 63: 4603–4608.

49. LemonK, de VriesRD, MesmanAW, McQuaidS, van AmerongenG, et al. (2011) Early target cells of measles virus after aerosol infection of non-human primates. PLoS pathogens 7: e1001263.

50. McDonaldD, VodickaMA, LuceroG, SvitkinaTM, BorisyGG, et al. (2002) Visualization of the intracellular behavior of HIV in living cells. The Journal of cell biology 159: 441–452.

51. SimsAC, BaricRS, YountB, BurkettSE, CollinsPL, et al. (2005) Severe acute respiratory syndrome coronavirus infection of human ciliated airway epithelia: role of ciliated cells in viral spread in the conducting airways of the lungs. Journal of virology 79: 15511–15524.

52. LakdawalaSS, LamirandeEW, SuguitanALJr, WangW, SantosCP, et al. (2011) Eurasian-origin gene segments contribute to the transmissibility, aerosol release, and morphology of the 2009 pandemic H1N1 influenza virus. PLoS pathogens 7: e1002443.

53. ShihJD, WaksZ, KedershaN, SilverPA (2011) Visualization of single mRNAs reveals temporal association of proteins with microRNA-regulated mRNA. Nucleic acids research 39: 7740–7749.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2014 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#