-
Články
- Časopisy
- Kurzy
- Témy
- Kongresy
- Videa
- Podcasty
Immune Suppression by Neutrophils in HIV-1 Infection: Role of PD-L1/PD-1 Pathway
Despite 30 years of intensive research, our understanding of how HIV-1 virus undermines the ability of the immune system to fight common infections is limited. Although we know that T cells, a key cell population that normally fights invading pathogens, lose their ability to function in HIV-1-infected individuals, we do not fully understand why. Here, we found that HIV-1 virus activates another type of cells, neutrophils, the most common type of white cell in the blood. Activated neutrophils negatively affect the function of T cells and prevent them from producing cytokines, protective proteins that serve as messengers orchestrating the immune response to bacteria and viruses. This newly identified mechanism of immune suppression mediated by neutrophils may alter our understanding of HIV-1 pathogenesis and result in a design of novel therapies targeting the loss of immune function in HIV-1/AIDS.
Vyšlo v časopise: Immune Suppression by Neutrophils in HIV-1 Infection: Role of PD-L1/PD-1 Pathway. PLoS Pathog 10(3): e32767. doi:10.1371/journal.ppat.1003993
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1003993Souhrn
Despite 30 years of intensive research, our understanding of how HIV-1 virus undermines the ability of the immune system to fight common infections is limited. Although we know that T cells, a key cell population that normally fights invading pathogens, lose their ability to function in HIV-1-infected individuals, we do not fully understand why. Here, we found that HIV-1 virus activates another type of cells, neutrophils, the most common type of white cell in the blood. Activated neutrophils negatively affect the function of T cells and prevent them from producing cytokines, protective proteins that serve as messengers orchestrating the immune response to bacteria and viruses. This newly identified mechanism of immune suppression mediated by neutrophils may alter our understanding of HIV-1 pathogenesis and result in a design of novel therapies targeting the loss of immune function in HIV-1/AIDS.
Zdroje
1. AmulicB, CazaletC, HayesGL, MetzlerKD, ZychlinskyA (2012) Neutrophil function: from mechanisms to disease. Annu Rev Immunol 30 : 459–489.
2. MantovaniA, CassatellaMA, CostantiniC, JaillonS (2011) Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 11 : 519–531.
3. ChtanovaT, SchaefferM, HanS-J, van DoorenGG, NollmannM, et al. (2008) Dynamics of Neutrophil Migration in Lymph Nodes during Infection. Immunity 29 : 487–496.
4. BeauvillainC, CuninP, DoniA, ScotetM, JaillonS, et al. (2011) CCR7 is involved in the migration of neutrophils to lymph nodes. Blood 117 : 1196–1204.
5. MullerI, MunderM, KropfP, HanschGM (2009) Polymorphonuclear neutrophils and T lymphocytes: strange bedfellows or brothers in arms? Trends Immunol 30 : 522–530.
6. PillayJ, TakT, KampVM, KoendermanL (2013) Immune suppression by neutrophils and granulocytic myeloid-derived suppressor cells: simil arities and differences. Cell Mol Life Sci
7. PillayJ, KampVM, van HoffenE, VisserT, TakT, et al. (2012) A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1. J Clin Invest 122 : 327–336.
8. GabrilovichDI, NagarajS (2009) Myeloid-derived suppressor cells as regulators of the immune system. NatRevImmunol 9 : 162–174.
9. RodriguezPC, ErnstoffMS, HernandezC, AtkinsM, ZabaletaJ, et al. (2009) Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer research 69 : 1553–1560.
10. EruslanovE, NeubergerM, DaurkinI, PerrinGQ, AlgoodC, et al. (2012) Circulating and tumor-infiltrating myeloid cell subsets in patients with bladder cancer. Int J Cancer 130 : 1109–1119.
11. HelZ, McGheeJR, MesteckyJ (2006) HIV infection: first battle decides the war. Trends Immunol 27 : 274–281.
12. ReuterMA, PomboC, BettsMR (2012) Cytokine production and dysregulation in HIV pathogenesis: lessons for development of therapeutics and vaccines. Cytokine Growth Factor Rev 23 : 181–191.
13. BettsMR, NasonMC, WestSM, De RosaSC, MiguelesSA, et al. (2006) HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood 107 : 4781–4789.
14. DayCL, KaufmannDE, KiepielaP, BrownJA, MoodleyES, et al. (2006) PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443 : 350–354.
15. BrenchleyJM, KarandikarNJ, BettsMR, AmbrozakDR, HillBJ, et al. (2003) Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood 101 : 2711–2720.
16. El-FarM, HalwaniR, SaidE, TrautmannL, DoroudchiM, et al. (2008) T-cell exhaustion in HIV infection. Curr HIV/AIDS Rep 5 : 13–19.
17. RosignoliG, CranageA, BurtonC, NelsonM, SteelA, et al. (2007) Expression of PD-L1, a marker of disease status, is not reduced by HAART in aviraemic patients. AIDS 21 : 1379–1381.
18. FreemanGJ, LongAJ, IwaiY, BourqueK, ChernovaT, et al. (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192 : 1027–1034.
19. CarterL, FouserLA, JussifJ, FitzL, DengB, et al. (2002) PD-1:PD-L inhibitory pathway affects both CD4(+) and CD8(+) T cells and is overcome by IL-2. Eur J Immunol 32 : 634–643.
20. KeirME, ButteMJ, FreemanGJ, SharpeAH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26 : 677–704.
21. WherryEJ, HaSJ, KaechSM, HainingWN, SarkarS, et al. (2007) Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27 : 670–684.
22. VeluV, TitanjiK, ZhuB, HusainS, PladevegaA, et al. (2009) Enhancing SIV-specific immunity in vivo by PD-1 blockade. Nature 458 : 206–210.
23. Dyavar ShettyR, VeluV, TitanjiK, BosingerSE, FreemanGJ, et al. (2012) PD-1 blockade during chronic SIV infection reduces hyperimmune activation and microbial translocation in rhesus macaques. J Clin Invest 122 : 1712–1716.
24. FinnefrockAC, TangA, LiF, FreedDC, FengM, et al. (2009) PD-1 blockade in rhesus macaques: impact on chronic infection and prophylactic vaccination. J Immunol 182 : 980–987.
25. MeierA, BagchiA, SidhuHK, AlterG, SuscovichTJ, et al. (2008) Upregulation of PD-L1 on monocytes and dendritic cells by HIV-1 derived TLR ligands. AIDS 22 : 655–658.
26. Rodriguez-GarciaM, PorichisF, de JongOG, LeviK, DiefenbachTJ, et al. (2011) Expression of PD-L1 and PD-L2 on human macrophages is up-regulated by HIV-1 and differentially modulated by IL-10. J Leukoc Biol 89 : 507–515.
27. VollbrechtT, StirnerR, TufmanA, RoiderJ, HuberRM, et al. (2012) Chronic progressive HIV-1 infection is associated with elevated levels of myeloid-derived suppressor cells. AIDS 26: F31–37.
28. ClokeT, MunderM, BerginP, HerathS, ModolellM, et al. (2013) Phenotypic Alteration of Neutrophils in the Blood of HIV Seropositive Patients. PLoS One 8: e72034.
29. BoassoA, HardyAW, LandayAL, MartinsonJL, AndersonSA, et al. (2008) PDL-1 upregulation on monocytes and T cells by HIV via type I interferon: restricted expression of type I interferon receptor by CCR5-expressing leukocytes. Clin Immunol 129 : 132–144.
30. BrenchleyJM, DouekDC (2012) Microbial translocation across the GI tract. Annu Rev Immunol 30 : 149–173.
31. SandlerNG, WandH, RoqueA, LawM, NasonMC, et al. (2011) Plasma levels of soluble CD14 independently predict mortality in HIV infection. The Journal of infectious diseases 203 : 780–790.
32. SandlerNG, KohC, RoqueA, EcclestonJL, SiegelRB, et al. (2011) Host Response to Translocated Microbial Products Predicts Outcomes of Patients with HBV or HCV infection. Gastroenterology 141 : 1220–30.
33. BrenchleyJM, PriceDA, SchackerTW, AsherTE, SilvestriG, et al. (2006) Microbial translocation is a cause of systemic immune activation in chronic HIV infection. NatMed 12 : 1365–1371.
34. WorthenGS, AvdiN, VukajlovichS, TobiasPS (1992) Neutrophil adherence induced by lipopolysaccharide in vitro. Role of plasma component interaction with lipopolysaccharide. J Clin Invest 90 : 2526–2535.
35. PapagnoL, SpinaCA, MarchantA, SalioM, RuferN, et al. (2004) Immune activation and CD8+ T-cell differentiation towards senescence in HIV-1 infection. PLoSBiol 2: E20.
36. GoicoecheaM, SmithDM, LiuL, MayS, TenorioAR, et al. (2006) Determinants of CD4+ T cell recovery during suppressive antiretroviral therapy: association of immune activation, T cell maturation markers, and cellular HIV-1 DNA. J InfectDis 194 : 29–37.
37. ClokeTE, GarveyL, ChoiBS, AbebeT, HailuA, et al. (2010) Increased level of arginase activity correlates with disease severity in HIV-seropositive patients. J Infect Dis 202 : 374–385.
38. MunderM (2009) Arginase: an emerging key player in the mammalian immune system. BrJPharmacol 158 : 638–651.
39. ThewissenM, DamoiseauxJ, van de GaarJ, TervaertJWC (2011) Neutrophils and T cells: Bidirectional effects and functional interferences. Molecular Immunology 48 : 2094–2101.
40. YamamotoS, NavaRG, ZhuJ, HuangHJ, IbrahimM, et al. (2012) Cutting edge: Pseudomonas aeruginosa abolishes established lung transplant tolerance by stimulating B7 expression on neutrophils. J Immunol 189 : 4221–4225.
41. de KleijnS, LangereisJD, LeentjensJ, KoxM, NeteaMG, et al. (2013) IFN-gamma-Stimulated Neutrophils Suppress Lymphocyte Proliferation through Expression of PD-L1. PLoS One 8: e72249.
42. HotchkissRS, CoopersmithCM, McDunnJE, FergusonTA (2009) The sepsis seesaw: tilting toward immunosuppression. Nat Med 15 : 496–497.
43. TateMD, DengYM, JonesJE, AndersonGP, BrooksAG, et al. (2009) Neutrophils ameliorate lung injury and the development of severe disease during influenza infection. J Immunol 183 : 7441–7450.
44. FujisawaH (2008) Neutrophils play an essential role in cooperation with antibody in both protection against and recovery from pulmonary infection with influenza virus in mice. J Virol 82 : 2772–2783.
45. McNabFW, BerryMP, GrahamCM, BlochSA, OniT, et al. (2011) Programmed death ligand 1 is over-expressed by neutrophils in the blood of patients with active tuberculosis. Eur J Immunol 41 : 1941–1947.
46. ClokeT, MunderM, TaylorG, MullerI, KropfP (2012) Characterization of a novel population of low-density granulocytes associated with disease severity in HIV-1 infection. PLoS One 7: e48939.
47. RodriguezPC, QuicenoDG, OchoaAC (2007) L-arginine availability regulates T-lymphocyte cell-cycle progression. Blood 109 : 1568–1573.
48. BuckleyCD, RossEA, McGettrickHM, OsborneCE, HaworthO, et al. (2006) Identification of a phenotypically and functionally distinct population of long-lived neutrophils in a model of reverse endothelial migration. J Leukoc Biol 79 : 303–311.
49. KaplanMJ, RadicM (2012) Neutrophil extracellular traps: double-edged swords of innate immunity. J Immunol 189 : 2689–2695.
50. KropfP, BaudD, MarshallSE, MunderM, MosleyA, et al. (2007) Arginase activity mediates reversible T cell hyporesponsiveness in human pregnancy. Eur J Immunol 37 : 935–945.
51. PrinceLR, WhyteMK, SabroeI, ParkerLC (2011) The role of TLRs in neutrophil activation. Curr Opin Pharmacol 11 : 397–403.
52. HerbeuvalJP, NilssonJ, BoassoA, HardyAW, KruhlakMJ, et al. (2006) Differential expression of IFN-alpha and TRAIL/DR5 in lymphoid tissue of progressor versus nonprogressor HIV-1-infected patients. Proc Natl Acad Sci U S A 103 : 7000–7005.
53. von SydowM, SonnerborgA, GainesH, StrannegardO (1991) Interferon-alpha and tumor necrosis factor-alpha in serum of patients in various stages of HIV-1 infection. AIDS Res Hum Retroviruses 7 : 375–380.
54. ShadduckPP, WeinbergJB, HaneyAF, BartlettJA, LangloisAJ, et al. (1991) Lack of enhancing effect of human anti-human immunodeficiency virus type 1 (HIV-1) antibody on HIV-1 infection of human blood monocytes and peritoneal macrophages. J Virol 65 : 4309–4316.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium
Článek DHX36 Enhances RIG-I Signaling by Facilitating PKR-Mediated Antiviral Stress Granule FormationČlánek Oral Bacteria and CancerČlánek A Non-Coding RNA Promotes Bacterial Persistence and Decreases Virulence by Regulating a Regulator in
Článok vyšiel v časopisePLOS Pathogens
Najčítanejšie tento týždeň
2014 Číslo 3- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
-
Všetky články tohto čísla
- Conflicting Interests in the Pathogen–Host Tug of War: Fungal Micronutrient Scavenging Versus Mammalian Nutritional Immunity
- Putting Fungi to Work: Harvesting a Cornucopia of Drugs, Toxins, and Antibiotics
- Mycobacteriophages: Windows into Tuberculosis
- Human African Trypanosomiasis and Immunological Memory: Effect on Phenotypic Lymphocyte Profiles and Humoral Immunity
- Five Things to Know about Genetically Modified (GM) Insects for Vector Control
- A Missing Dimension in Measures of Vaccination Impacts
- Eosinophils Are Important for Protection, Immunoregulation and Pathology during Infection with Nematode Microfilariae
- Clonality of HTLV-2 in Natural Infection
- Production, Fate and Pathogenicity of Plasma Microparticles in Murine Cerebral Malaria
- Group B Streptococcal Infection of the Choriodecidua Induces Dysfunction of the Cytokeratin Network in Amniotic Epithelium: A Pathway to Membrane Weakening
- New Insights into How Adapts to Its Mammalian Host during Bubonic Plague
- Foodborne Transmission of Nipah Virus in Syrian Hamsters
- A Polysaccharide Virulence Factor from Elicits Anti-inflammatory Effects through Induction of Interleukin-1 Receptor Antagonist
- Structural and Functional Characterization of a Complex between the Acidic Transactivation Domain of EBNA2 and the Tfb1/p62 Subunit of TFIIH
- Adaptive Gene Amplification As an Intermediate Step in the Expansion of Virus Host Range
- DHX36 Enhances RIG-I Signaling by Facilitating PKR-Mediated Antiviral Stress Granule Formation
- Hepatitis B Virus Infection and Immunopathogenesis in a Humanized Mouse Model: Induction of Human-Specific Liver Fibrosis and M2-Like Macrophages
- Crk Adaptors Negatively Regulate Actin Polymerization in Pedestals Formed by Enteropathogenic (EPEC) by Binding to Tir Effector
- Fatty Acid Biosynthesis Contributes Significantly to Establishment of a Bioenergetically Favorable Environment for Vaccinia Virus Infection
- A Cytosolic Chaperone Complexes with Dynamic Membrane J-Proteins and Mobilizes a Nonenveloped Virus out of the Endoplasmic Reticulum
- Intracellular Promote Invasive Cell Motility through Kinase Regulation of the Host Actin Cytoskeleton
- MAVS-MKK7-JNK2 Defines a Novel Apoptotic Signaling Pathway during Viral Infection
- RON5 Is Critical for Organization and Function of the Moving Junction Complex
- Immune Suppression by Neutrophils in HIV-1 Infection: Role of PD-L1/PD-1 Pathway
- and Exhibit Metabolic Symbioses
- The Herpes Virus Fc Receptor gE-gI Mediates Antibody Bipolar Bridging to Clear Viral Antigens from the Cell Surface
- Target Cell Availability, Rather than Breast Milk Factors, Dictates Mother-to-Infant Transmission of SIV in Sooty Mangabeys and Rhesus Macaques
- Evolution of the Retroviral Restriction Gene : Inhibition of Non-MLV Retroviruses
- Infection of Adult Thymus with Murine Retrovirus Induces Virus-Specific Central Tolerance That Prevents Functional Memory CD8 T Cell Differentiation
- Fha Interaction with Phosphothreonine of TssL Activates Type VI Secretion in
- In Vivo Administration of a JAK3 Inhibitor during Acute SIV Infection Leads to Significant Increases in Viral Load during Chronic Infection
- Lack of Detectable HIV-1 Molecular Evolution during Suppressive Antiretroviral Therapy
- Activation of HIV-1 from Latent Infection via Synergy of RUNX1 Inhibitor Ro5-3335 and SAHA
- A Compact, Multifunctional Fusion Module Directs Cholesterol-Dependent Homomultimerization and Syncytiogenic Efficiency of Reovirus p10 FAST Proteins
- The Role of Host and Microbial Factors in the Pathogenesis of Pneumococcal Bacteraemia Arising from a Single Bacterial Cell Bottleneck
- Genetic Dissection of Gut Epithelial Responses to
- Two-Component System Cross-Regulation Integrates Response to Heme and Cell Envelope Stress
- Oral Mycobiome Analysis of HIV-Infected Patients: Identification of as an Antagonist of Opportunistic Fungi
- A Model System for Studying the Transcriptomic and Physiological Changes Associated with Mammalian Host-Adaptation by Serovar Copenhageni
- Inflammasome Sensor NLRP1 Controls Rat Macrophage Susceptibility to
- ChIP-Seq and RNA-Seq Reveal an AmrZ-Mediated Mechanism for Cyclic di-GMP Synthesis and Biofilm Development by
- The Hypervariable Amino-Terminus of P1 Protease Modulates Potyviral Replication and Host Defense Responses
- Caspase-1-Dependent and -Independent Cell Death Pathways in Infection of Macrophages
- The Effect of Cell Growth Phase on the Regulatory Cross-Talk between Flagellar and Spi1 Virulence Gene Expression
- Different Mutagenic Potential of HIV-1 Restriction Factors APOBEC3G and APOBEC3F Is Determined by Distinct Single-Stranded DNA Scanning Mechanisms
- Oral Bacteria and Cancer
- Identification of OmpA, a Protein Involved in Host Cell Invasion, by Multi-Phenotypic High-Content Screening
- Transovarial Transmission of a Plant Virus Is Mediated by Vitellogenin of Its Insect Vector
- VE-Cadherin Cleavage by LasB Protease from Facilitates Type III Secretion System Toxicity in Endothelial Cells
- Dimerization of VirD2 Binding Protein Is Essential for Induced Tumor Formation in Plants
- Crystal Structure of the Vaccinia Virus DNA Polymerase Holoenzyme Subunit D4 in Complex with the A20 N-Terminal Domain
- Post-Translational Regulation via Clp Protease Is Critical for Survival of
- Modulation of Phagosomal pH by Promotes Hyphal Morphogenesis and Requires Stp2p, a Regulator of Amino Acid Transport
- Rotavirus Activates Lymphocytes from Non-Obese Diabetic Mice by Triggering Toll-Like Receptor 7 Signaling and Interferon Production in Plasmacytoid Dendritic Cells
- Cytomegalovirus m154 Hinders CD48 Cell-Surface Expression and Promotes Viral Escape from Host Natural Killer Cell Control
- Interferon Regulatory Factor-1 Protects from Fatal Neurotropic Infection with Vesicular Stomatitis Virus by Specific Inhibition of Viral Replication in Neurons
- HMGB1-Promoted and TLR2/4-Dependent NK Cell Maturation and Activation Take Part in Rotavirus-Induced Murine Biliary Atresia
- An Immunomics Approach to Schistosome Antigen Discovery: Antibody Signatures of Naturally Resistant and Chronically Infected Individuals from Endemic Areas
- PPARγ Agonists Improve Survival and Neurocognitive Outcomes in Experimental Cerebral Malaria and Induce Neuroprotective Pathways in Human Malaria
- A Non-Coding RNA Promotes Bacterial Persistence and Decreases Virulence by Regulating a Regulator in
- Viral OTU Deubiquitinases: A Structural and Functional Comparison
- Heterogeneity and Breadth of Host Antibody Response to KSHV Infection Demonstrated by Systematic Analysis of the KSHV Proteome
- Influenza A Virus Assembly Intermediates Fuse in the Cytoplasm
- Broadly Reactive Human CD8 T Cells that Recognize an Epitope Conserved between VZV, HSV and EBV
- Oncogenic Human Papillomaviruses Activate the Tumor-Associated Lens Epithelial-Derived Growth Factor (LEDGF) Gene
- Erythrocyte Invasion: Combining Function with Immune Evasion
- IL-1α and Complement Cooperate in Triggering Local Neutrophilic Inflammation in Response to Adenovirus and Eliminating Virus-Containing Cells
- Chronic Exposure to Type-I IFN under Lymphopenic Conditions Alters CD4 T Cell Homeostasis
- PLOS Pathogens
- Archív čísel
- Aktuálne číslo
- Informácie o časopise
Najčítanejšie v tomto čísle- Cytomegalovirus m154 Hinders CD48 Cell-Surface Expression and Promotes Viral Escape from Host Natural Killer Cell Control
- Human African Trypanosomiasis and Immunological Memory: Effect on Phenotypic Lymphocyte Profiles and Humoral Immunity
- DHX36 Enhances RIG-I Signaling by Facilitating PKR-Mediated Antiviral Stress Granule Formation
- Conflicting Interests in the Pathogen–Host Tug of War: Fungal Micronutrient Scavenging Versus Mammalian Nutritional Immunity
Prihlásenie#ADS_BOTTOM_SCRIPTS#Zabudnuté hesloZadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.
- Časopisy