#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Lipophorin Receptors Recruit the Lipoprotein LTP to the Plasma Membrane to Mediate Lipid Uptake


In multicellular animals, nutrients and metabolites required for cell growth are distributed throughout the body by the blood circulation or in insects, by hemolymph. The uptake of these molecules by cells is tightly controlled to ensure the necessary coordination between cellular requirements and organismal homeostasis. Here we examine the mechanisms that mediate the cellular uptake of lipids in Drosophila melanogaster, a model organisms increasingly used in studies of metabolic homeostasis and its intersection with growth, aging and disease. In Drosophila, the majority of hemolymph lipids are carried in a lipoprotein particle named lipophorin. Lipid uptake in organs such as the ovaries or the imaginal discs is initiated by the expression of receptors of the LDLR family in the cell membrane. We show that these receptors bind with high affinity to a circulating lipoprotein named LTP, recruiting it to the cell surface. Surprisingly, LTP is not a major lipid carrier but instead catalyzes the transfer of lipids from lipophorin to cells. Our results improve our understanding of a central aspect of lipid metabolism in Drosophila and illustrate that although homologous proteins of the LDLR family play central roles in lipid uptake across phyla, the specific molecular mechanisms involved are diverse.


Vyšlo v časopise: Lipophorin Receptors Recruit the Lipoprotein LTP to the Plasma Membrane to Mediate Lipid Uptake. PLoS Genet 11(6): e32767. doi:10.1371/journal.pgen.1005356
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005356

Souhrn

In multicellular animals, nutrients and metabolites required for cell growth are distributed throughout the body by the blood circulation or in insects, by hemolymph. The uptake of these molecules by cells is tightly controlled to ensure the necessary coordination between cellular requirements and organismal homeostasis. Here we examine the mechanisms that mediate the cellular uptake of lipids in Drosophila melanogaster, a model organisms increasingly used in studies of metabolic homeostasis and its intersection with growth, aging and disease. In Drosophila, the majority of hemolymph lipids are carried in a lipoprotein particle named lipophorin. Lipid uptake in organs such as the ovaries or the imaginal discs is initiated by the expression of receptors of the LDLR family in the cell membrane. We show that these receptors bind with high affinity to a circulating lipoprotein named LTP, recruiting it to the cell surface. Surprisingly, LTP is not a major lipid carrier but instead catalyzes the transfer of lipids from lipophorin to cells. Our results improve our understanding of a central aspect of lipid metabolism in Drosophila and illustrate that although homologous proteins of the LDLR family play central roles in lipid uptake across phyla, the specific molecular mechanisms involved are diverse.


Zdroje

1. Arrese EL, Canavoso LE, Jouni ZE, Pennington JE, Tsuchida K, et al. (2001) Lipid storage and mobilization in insects: current status and future directions. Insect Biochem Mol Biol 31: 7–17. 11102830

2. Ziegler R, Van Antwerpen R (2006) Lipid uptake by insect oocytes. Insect Biochem Mol Biol 36: 264–272. 16551540

3. Kuhnlein RP (2011) The contribution of the Drosophila model to lipid droplet research. Prog Lipid Res 50: 348–356. doi: 10.1016/j.plipres.2011.04.001 21620889

4. Palm W, Sampaio JL, Brankatschk M, Carvalho M, Mahmoud A, et al. (2012) Lipoproteins in Drosophila melanogaster—assembly, function, and influence on tissue lipid composition. PLoS Genet 8: e1002828. doi: 10.1371/journal.pgen.1002828 22844248

5. Kutty RK, Kutty G, Kambadur R, Duncan T, Koonin EV, et al. (1996) Molecular characterization and developmental expression of a retinoid- and fatty acid-binding glycoprotein from Drosophila. A putative lipophorin. J Biol Chem 271: 20641–20649. 8702812

6. Van der Horst DJ (1990) Lipid transport function of lipoproteins in flying insects. Biochim Biophys Acta 1047: 195–211. 2252909

7. van der Horst DJ, van Hoof D, van Marrewijk WJ, Rodenburg KW (2002) Alternative lipid mobilization: the insect shuttle system. Mol Cell Biochem 239: 113–119. 12479576

8. Tsuchida K, Wells MA (1990) Isolation and characterization of a lipoprotein receptor from the fat body of an insect, Manduca sexta. J Biol Chem 265: 5761–5767. 2156827

9. Gondim KC, Wells MA (2000) Characterization of lipophorin binding to the midgut of larval Manduca sexta. Insect Biochem Mol Biol 30: 405–413. 10745164

10. Dantuma NP, Van Marrewijk WJ, Wynne HJ, Van der Horst DJ (1996) Interaction of an insect lipoprotein with its binding site at the fat body. J Lipid Res 37: 1345–1355. 8808769

11. Fruttero LL, Demartini DR, Rubiolo ER, Carlini CR, Canavoso LE (2014) beta-chain of ATP synthase as a lipophorin binding protein and its role in lipid transfer in the midgut of Panstrongylus megistus (Hemiptera: Reduviidae). Insect Biochem Mol Biol 52: 1–12. doi: 10.1016/j.ibmb.2014.06.002 24952172

12. Dantuma NP, Potters M, De Winther MP, Tensen CP, Kooiman FP, et al. (1999) An insect homolog of the vertebrate very low density lipoprotein receptor mediates endocytosis of lipophorins. J Lipid Res 40: 973–978. 10224168

13. Parra-Peralbo E, Culi J (2011) Drosophila lipophorin receptors mediate the uptake of neutral lipids in oocytes and imaginal disc cells by an endocytosis-independent mechanism. PLoS Genet 7: e1001297. doi: 10.1371/journal.pgen.1001297 21347279

14. Parvy JP, Napal L, Rubin T, Poidevin M, Perrin L, et al. (2012) Drosophila melanogaster Acetyl-CoA-carboxylase sustains a fatty acid-dependent remote signal to waterproof the respiratory system. PLoS Genet 8: e1002925. doi: 10.1371/journal.pgen.1002925 22956916

15. Blacklock BJ, Ryan RO (1994) Hemolymph lipid transport. Insect Biochem Mol Biol 24: 855–873. 7951265

16. Canavoso LE, Wells MA (2001) Role of lipid transfer particle in delivery of diacylglycerol from midgut to lipophorin in larval Manduca sexta. Insect Biochem Mol Biol 31: 783–790. 11378413

17. Yun HK, Jouni ZE, Wells MA (2002) Characterization of cholesterol transport from midgut to fat body in Manduca sexta larvae. Insect Biochem Mol Biol 32: 1151–1158. 12213250

18. Jouni ZE, Takada N, Gazard J, Maekawa H, Wells MA, et al. (2003) Transfer of cholesterol and diacylglycerol from lipophorin to Bombyx mori ovarioles in vitro: role of the lipid transfer particle. Insect Biochem Mol Biol 33: 145–153. 12535673

19. Canavoso LE, Yun HK, Jouni ZE, Wells MA (2004) Lipid transfer particle mediates the delivery of diacylglycerol from lipophorin to fat body in larval Manduca sexta. J Lipid Res 45: 456–465. 14679163

20. Yokoyama H, Yokoyama T, Yuasa M, Fujimoto H, Sakudoh T, et al. (2013) Lipid transfer particle from the silkworm, Bombyx mori, is a novel member of the apoB/large lipid transfer protein family. J Lipid Res 54: 2379–2390. doi: 10.1194/jlr.M037093 23812557

21. Panakova D, Sprong H, Marois E, Thiele C, Eaton S (2005) Lipoprotein particles are required for Hedgehog and Wingless signalling. Nature 435: 58–65. 15875013

22. Puig O, Caspary F, Rigaut G, Rutz B, Bouveret E, et al. (2001) The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24: 218–229. 11403571

23. Callejo A, Culi J, Guerrero I (2008) Patched, the receptor of Hedgehog, is a lipoprotein receptor. Proc Natl Acad Sci U S A 105: 912–917. doi: 10.1073/pnas.0705603105 18198278

24. McGuire SE, Le PT, Osborn AJ, Matsumoto K, Davis RL (2003) Spatiotemporal rescue of memory dysfunction in Drosophila. Science 302: 1765–1768. 14657498

25. Rusten TE, Lindmo K, Juhasz G, Sass M, Seglen PO, et al. (2004) Programmed autophagy in the Drosophila fat body is induced by ecdysone through regulation of the PI3K pathway. Dev Cell 7: 179–192. 15296715

26. Capdevila J, Pariente F, Sampedro J, Alonso JL, Guerrero I (1994) Subcellular localization of the segment polarity protein patched suggests an interaction with the wingless reception complex in Drosophila embryos. Development 120: 987–998. 7600973

27. Brown MS, Goldstein JL (1986) A receptor-mediated pathway for cholesterol homeostasis. Science 232: 34–47. 3513311

28. Chino H, Kitazawa K (1981) Diacylglycerol-carrying lipoprotein of hemolymph of the locust and some insects. J Lipid Res 22: 1042–1052. 6795289

29. Canavoso LE, Jouni ZE, Karnas KJ, Pennington JE, Wells MA (2001) Fat metabolism in insects. Annu Rev Nutr 21: 23–46. 11375428

30. Dallinga-Thie GM, Franssen R, Mooij HL, Visser ME, Hassing HC, et al. (2010) The metabolism of triglyceride-rich lipoproteins revisited: new players, new insight. Atherosclerosis 211: 1–8. doi: 10.1016/j.atherosclerosis.2009.12.027 20117784

31. Eugster C, Panakova D, Mahmoud A, Eaton S (2007) Lipoprotein-heparan sulfate interactions in the Hh pathway. Dev Cell 13: 57–71. 17609110

32. Blacklock BJ, Smillie M, Ryan RO (1992) Insect lipid transfer particle can facilitate net vectorial lipid transfer via a carrier-mediated mechanism. J Biol Chem 267: 14033–14037. 1629202

33. Ryan RO, Howe A, Scraba DG (1990) Studies of the morphology and structure of the plasma lipid transfer particle from the tobacco hornworm, Manduca sexta. J Lipid Res 31: 871–879. 2380635

34. Dantuma NP, Pijnenburg MA, Diederen JH, Van der Horst DJ (1998) Multiple interactions between insect lipoproteins and fat body cells: extracellular trapping and endocytic trafficking. J Lipid Res 39: 1877–1888. 9741701

35. Dantuma NP, Pijnenburg MA, Diederen JH, Van der Horst DJ (1997) Developmental down-regulation of receptor-mediated endocytosis of an insect lipoprotein. J Lipid Res 38: 254–265. 9162745

36. Van Hoof D, Rodenburg KW, Van der Horst DJ (2002) Insect lipoprotein follows a transferrin-like recycling pathway that is mediated by the insect LDL receptor homologue. J Cell Sci 115: 4001–4012. 12356906

37. Van Hoof D, Rodenburg KW, Van der Horst DJ (2005) Receptor-mediated endocytosis and intracellular trafficking of lipoproteins and transferrin in insect cells. Insect Biochem Mol Biol 35: 117–128. 15681222

38. Khaliullina H, Panáková D, Eugster C, Riedel F, Carvalho M, et al. (2009) Patched regulates Smoothened trafficking using lipoprotein-derived lipids. Development 136: 4111–4121. doi: 10.1242/dev.041392 19906846

39. Buchon N, Osman D, David FP, Fang HY, Boquete JP, et al. (2013) Morphological and molecular characterization of adult midgut compartmentalization in Drosophila. Cell Rep 3: 1725–1738.

40. Singh TK, Scraba DG, Ryan RO (1992) Conversion of human low density lipoprotein into a very low density lipoprotein-like particle in vitro. J Biol Chem 267: 9275–9280. 1343558

41. Sakudoh T, Kuwazaki S, Iizuka T, Narukawa J, Yamamoto K, et al. (2013) CD36 homolog divergence is responsible for the selectivity of carotenoid species migration to the silk gland of the silkworm Bombyx mori. J Lipid Res 54: 482–495. doi: 10.1194/jlr.M032771 23160179

42. Grigliatti TA, Hall L, Rosenbluth R, Suzuki DT (1973) Temperature-sensitive mutations in Drosophila melanogaster. XIV. A selection of immobile adults. Mol Gen Genet 120: 107–114. 4631264

43. Wucherpfennig T, Wilsch-Brauninger M, Gonzalez-Gaitan M (2003) Role of Drosophila Rab5 during endosomal trafficking at the synapse and evoked neurotransmitter release. J Cell Biol 161: 609–624. 12743108

44. Pulipparacharuvil S, Akbar MA, Ray S, Sevrioukov EA, Haberman AS, et al. (2005) Drosophila Vps16A is required for trafficking to lysosomes and biogenesis of pigment granules. J Cell Sci 118: 3663–3673. 16046475

45. Tanimoto H, Itoh S, ten Dijke P, Tabata T (2000) Hedgehog creates a gradient of DPP activity in Drosophila wing imaginal discs. Mol Cell 5: 59–71. 10678169

46. Gronke S, Beller M, Fellert S, Ramakrishnan H, Jackle H, et al. (2003) Control of fat storage by a Drosophila PAT domain protein. Curr Biol 13: 603–606. 12676093

47. Huet F, Lu JT, Myrick KV, Baugh LR, Crosby MA, et al. (2002) A deletion-generator compound element allows deletion saturation analysis for genomewide phenotypic annotation. Proc Natl Acad Sci U S A 99: 9948–9953. 12096187

48. Kyriakakis P, Tipping M, Abed L, Veraksa A (2008) Tandem affinity purification in Drosophila: the advantages of the GS-TAP system. Fly (Austin) 2: 229–235.

49. Rorth P (1998) Gal4 in the Drosophila female germline. Mech Dev 78: 113–118. 9858703

50. Bischof J, Maeda RK, Hediger M, Karch F, Basler K (2007) An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc Natl Acad Sci U S A 104: 3312–3317. 17360644

51. Rupp RA, Snider L, Weintraub H (1994) Xenopus embryos regulate the nuclear localization of XMyoD. Genes Dev 8: 1311–1323. 7926732

52. Venken KJ, Carlson JW, Schulze KL, Pan H, He Y, et al. (2009) Versatile P[acman] BAC libraries for transgenesis studies in Drosophila melanogaster. Nat Methods 6: 431–434. doi: 10.1038/nmeth.1331 19465919

53. Warming S, Costantino N, Court DL, Jenkins NA, Copeland NG (2005) Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res 33: e36. 15731329

54. Oeffinger M, Wei KE, Rogers R, DeGrasse JA, Chait BT, et al. (2007) Comprehensive analysis of diverse ribonucleoprotein complexes. Nat Methods 4: 951–956. 17922018

55. Potter CJ, Tasic B, Russler EV, Liang L, Luo L (2010) The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis. Cell 141: 536–548. doi: 10.1016/j.cell.2010.02.025 20434990

56. Tennessen JM, Barry WE, Cox J, Thummel CS (2014) Methods for studying metabolism in Drosophila. Methods 68: 105–115. doi: 10.1016/j.ymeth.2014.02.034 24631891

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 6
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#