-
Články
- Časopisy
- Kurzy
- Témy
- Kongresy
- Videa
- Podcasty
A Common Cancer Risk-Associated Allele in the Locus Encodes a Dominant Negative Inhibitor of Telomerase
Multiple cancer-associated single nucleotide polymorphisms (SNPs) associated with risk of a wide variety of cancers have been identified in the TERT-CLPTM1L region of 5p15.33, identifying this as a multi-cancer susceptibility locus. hTERT encodes the catalytic subunit of the enzyme telomerase, which is responsible for telomere length maintenance in the germline and in most immortalised cancer cells. To date, very little is known regarding the mechanisms by which specific hTERT SNPs predispose to cancer. In this study, we carried out detailed functional analyses on the intron 4 SNP rs10069690, which is associated with a small, but highly significant risk for many types of cancer. We show that the risk-associated minor allele of this SNP results in an hTERT mRNA splice variant, encoding a catalytically inactive protein which acts as a dominant negative inhibitor of telomerase activity and therefore decreases total telomerase activity. We propose that individuals who carry the rs10069690 minor allele have less telomerase activity in some cell types due to cell type-specific alternative splicing, which may result in slightly shorter telomeres, and hence an increased risk of genetic instability and tumorigenesis.
Vyšlo v časopise: A Common Cancer Risk-Associated Allele in the Locus Encodes a Dominant Negative Inhibitor of Telomerase. PLoS Genet 11(6): e32767. doi:10.1371/journal.pgen.1005286
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005286Souhrn
Multiple cancer-associated single nucleotide polymorphisms (SNPs) associated with risk of a wide variety of cancers have been identified in the TERT-CLPTM1L region of 5p15.33, identifying this as a multi-cancer susceptibility locus. hTERT encodes the catalytic subunit of the enzyme telomerase, which is responsible for telomere length maintenance in the germline and in most immortalised cancer cells. To date, very little is known regarding the mechanisms by which specific hTERT SNPs predispose to cancer. In this study, we carried out detailed functional analyses on the intron 4 SNP rs10069690, which is associated with a small, but highly significant risk for many types of cancer. We show that the risk-associated minor allele of this SNP results in an hTERT mRNA splice variant, encoding a catalytically inactive protein which acts as a dominant negative inhibitor of telomerase activity and therefore decreases total telomerase activity. We propose that individuals who carry the rs10069690 minor allele have less telomerase activity in some cell types due to cell type-specific alternative splicing, which may result in slightly shorter telomeres, and hence an increased risk of genetic instability and tumorigenesis.
Zdroje
1. Palm W, de Lange T (2008) How shelterin protects mammalian telomeres. Annu Rev Genet 42 : 301–334. doi: 10.1146/annurev.genet.41.110306.130350 18680434
2. Kaul Z, Cesare AJ, Huschtscha LI, Neumann AA, Reddel RR (2012) Five dysfunctional telomeres predict onset of senescence in human cells. EMBO Rep 13 : 52–59. doi: 10.1038/embor.2011.227 22157895
3. Bryan TM, Cech TR (1999) Telomerase and the maintenance of chromosome ends. Curr Opin Cell Biol 11 : 318–324. 10395557
4. Wright WE, Piatyszek MA, Rainey WE, Byrd W, Shay JW (1996) Telomerase activity in human germline and embryonic tissues and cells. Dev Genet 18 : 173–179. 8934879
5. Broccoli D, Young JW, de Lange T (1995) Telomerase activity in normal and malignant hematopoietic cells. Proc Natl Acad Sci U S A 92 : 9082–9086. 7568077
6. Hiyama K, Hirai Y, Kyoizumi S, Akiyama M, Hiyama E, et al. (1995) Activation of telomerase in human lymphocytes and hematopoietic progenitor cells. J Immunol 155 : 3711–3715. 7561072
7. Harle-Bachor C, Boukamp P (1996) Telomerase activity in the regenerative basal layer of the epidermis in human skin and in immortal and carcinoma-derived skin keratinocytes. Proc Natl Acad Sci U S A 93 : 6476–6481. 8692840
8. Shay JW, Bacchetti S (1997) A survey of telomerase activity in human cancer. Eur J Cancer 33 : 787–791. 9282118
9. Bryan TM, Englezou A, Dalla-Pozza L, Dunham MA, Reddel RR (1997) Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat Med 3 : 1271–1274. 9359704
10. Wong MS, Wright WE, Shay JW (2014) Alternative splicing regulation of telomerase: a new paradigm? Trends Genet 30 : 430–438. doi: 10.1016/j.tig.2014.07.006 25172021
11. Kilian A, Bowtell DD, Abud HE, Hime GR, Venter DJ, et al. (1997) Isolation of a candidate human telomerase catalytic subunit gene, which reveals complex splicing patterns in different cell types. Hum Mol Genet 6 : 2011–2019. 9328464
12. Hrdlickova R, Nehyba J, Bose HR Jr. (2012) Alternatively spliced TERT variants lacking telomerase activity stimulate cell proliferation. Mol Cell Biol 32 : 4283–4296. doi: 10.1128/MCB.00550-12 22907755
13. Bojesen SE, Pooley KA, Johnatty SE, Beesley J, Michailidou K, et al. (2013) Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nat Genet 45 : 371–384. doi: 10.1038/ng.2566 23535731
14. Ulaner GA, Hu JF, Vu TH, Giudice LC, Hoffman AR (1998) Telomerase activity in human development is regulated by human telomerase reverse transcriptase (hTERT) transcription and by alternate splicing of hTERT transcripts. Cancer Res 58 : 4168–4172. 9751630
15. Ulaner GA, Hu JF, Vu TH, Giudice LC, Hoffman AR (2001) Tissue-specific alternate splicing of human telomerase reverse transcriptase (hTERT) influences telomere lengths during human development. Int J Cancer 91 : 644–649. 11267974
16. Wong MS, Shay JW, Wright WE (2014) Regulation of human telomerase splicing by RNA:RNA pairing. Nat Commun 5 : 3306. doi: 10.1038/ncomms4306 24577044
17. Radan L, Hughes CS, Teichroeb JH, Vieira Zamora FM, Jewer M, et al. (2014) Microenvironmental regulation of telomerase isoforms in human embryonic stem cells. Stem Cells Dev 23 : 2046–2066. doi: 10.1089/scd.2013.0373 24749509
18. Colgin LM, Wilkinson C, Englezou A, Kilian A, Robinson MO, et al. (2000) The hTERTa splice variant is a dominant negative inhibitor of telomerase activity. Neoplasia 2 : 426–432. 11191109
19. Listerman I, Sun J, Gazzaniga FS, Lukas JL, Blackburn EH (2013) The major reverse transcriptase-incompetent splice variant of the human telomerase protein inhibits telomerase activity but protects from apoptosis. Cancer Res 73 : 2817–2828. doi: 10.1158/0008-5472.CAN-12-3082 23610451
20. Sauerwald A, Sandin S, Cristofari G, Scheres SH, Lingner J, et al. (2013) Structure of active dimeric human telomerase. Nat Struct Mol Biol 20 : 454–460. doi: 10.1038/nsmb.2530 23474713
21. Armanios M, Blackburn EH (2012) The telomere syndromes. Nat Rev Genet 13 : 693–704. doi: 10.1038/nrg3246 22965356
22. Savage SA (2014) Human telomeres and telomere biology disorders. Prog Mol Biol Transl Sci 125 : 41–66. doi: 10.1016/B978-0-12-397898-1.00002-5 24993697
23. Alter BP, Giri N, Savage SA, Rosenberg PS (2009) Cancer in dyskeratosis congenita. Blood 113 : 6549–6557. doi: 10.1182/blood-2008-12-192880 19282459
24. Kote-Jarai Z, Saunders EJ, Leongamornlert DA, Tymrakiewicz M, Dadaev T, et al. (2013) Fine-mapping identifies multiple prostate cancer risk loci at 5p15, one of which associates with TERT expression. Hum Mol Genet 22 : 2520–2528. doi: 10.1093/hmg/ddt086 23535824
25. Sheng X, Tong N, Tao G, Luo D, Wang M, et al. (2013) TERT polymorphisms modify the risk of acute lymphoblastic leukemia in Chinese children. Carcinogenesis 34 : 228–235. doi: 10.1093/carcin/bgs325 23066086
26. Rafnar T, Sulem P, Stacey SN, Geller F, Gudmundsson J, et al. (2009) Sequence variants at the TERT-CLPTM1L locus associate with many cancer types. Nat Genet 41 : 221–227. doi: 10.1038/ng.296 19151717
27. Mocellin S, Verdi D, Pooley KA, Landi MT, Egan KM, et al. (2012) Telomerase reverse transcriptase locus polymorphisms and cancer risk: a field synopsis and meta-analysis. J Natl Cancer Inst 104 : 840–854. doi: 10.1093/jnci/djs222 22523397
28. Bojesen SE (2013) Telomeres and human health. J Intern Med 274 : 399–413. doi: 10.1111/joim.12083 24127938
29. Liu Y, Cao L, Li Z, Zhou D, Liu W, et al. (2014) A genome-wide association study identifies a locus on TERT for mean telomere length in Han Chinese. PLoS ONE 9: e85043. doi: 10.1371/journal.pone.0085043 24465473
30. Pellatt AJ, Wolff RK, Lundgreen A, Cawthon R, Slattery ML (2012) Genetic and lifestyle influence on telomere length and subsequent risk of colon cancer in a case control study. Int J Mol Epidemiol Genet 3 : 184–194. 23050049
31. Speedy HE, Di Bernardo MC, Sava GP, Dyer MJ, Holroyd A, et al. (2014) A genome-wide association study identifies multiple susceptibility loci for chronic lymphocytic leukemia. Nat Genet 46 : 56–60. doi: 10.1038/ng.2843 24292274
32. Berndt SI, Skibola CF, Joseph V, Camp NJ, Nieters A, et al. (2013) Genome-wide association study identifies multiple risk loci for chronic lymphocytic leukemia. Nat Genet 45 : 868–876. doi: 10.1038/ng.2652 23770605
33. Wick M, Zubov D, Hagen G (1999) Genomic organization and promoter characterization of the gene encoding the human telomerase reverse transcriptase (hTERT). Gene 232 : 97–106. 10333526
34. Huschtscha LI, Noble JR, Neumann AA, Moy EL, Barry P, et al. (1998) Loss of p16INK4 expression by methylation is associated with lifespan extension of human mammary epithelial cells. Cancer Res 58 : 3508–3512. 9721850
35. Toouli CD, Huschtscha LI, Neumann AA, Noble JR, Colgin LM, et al. (2002) Comparison of human mammary epithelial cells immortalized by simian virus 40 T-Antigen or by the telomerase catalytic subunit. Oncogene 21 : 128–139. 11791183
36. Pickett HA, Cesare AJ, Johnstone RL, Neumann AA, Reddel RR (2009) Control of telomere length by a trimming mechanism that involves generation of t-circles. EMBO J 28 : 799–809. doi: 10.1038/emboj.2009.42 19214183
37. Maida Y, Yasukawa M, Furuuchi M, Lassmann T, Possemato R, et al. (2009) An RNA-dependent RNA polymerase formed by TERT and the RMRP RNA. Nature 461 : 230–235. doi: 10.1038/nature08283 19701182
38. Santos JH, Meyer JN, Van Houten B (2006) Mitochondrial localization of telomerase as a determinant for hydrogen peroxide-induced mitochondrial DNA damage and apoptosis. Hum Mol Genet 15 : 1757–1768. 16613901
39. Santos JH, Meyer JN, Skorvaga M, Annab LA, Van Houten B (2004) Mitochondrial hTERT exacerbates free-radical-mediated mtDNA damage. Aging Cell 3 : 399–411. 15569357
40. Park JI, Venteicher AS, Hong JY, Choi J, Jun S, et al. (2009) Telomerase modulates Wnt signalling by association with target gene chromatin. Nature 460 : 66–72. doi: 10.1038/nature08137 19571879
41. Listerman I, Gazzaniga FS, Blackburn EH (2014) An investigation of the effects of the telomerase core protein TERT on Wnt signaling in human breast cancer cells. Mol Cell Biol 34 : 280–289. doi: 10.1128/MCB.00844-13 24216762
42. Parra MK, Gee S, Mohandas N, Conboy JG (2011) Efficient in vivo manipulation of alternative pre-mRNA splicing events using antisense morpholinos in mice. J Biol Chem 286 : 6033–6039. doi: 10.1074/jbc.M110.158154 21156798
43. Wong MS, Chen L, Foster C, Kainthla R, Shay JW, et al. (2013) Regulation of telomerase alternative splicing: a target for chemotherapy. Cell Rep 3 : 1028–1035. doi: 10.1016/j.celrep.2013.03.011 23562158
44. Guigo R, Valcarcel J (2015) Prescribing splicing: a model predicts the impact of variations in the human gnme on RNA splicing and disease. Science 347 : 124–125. doi: 10.1126/science.aaa4864 25574005
45. Codd V, Nelson CP, Albrecht E, Mangino M, Deelen J, et al. (2013) Identification of seven loci affecting mean telomere length and their association with disease. Nat Genet 45 : 422–427. doi: 10.1038/ng.2528 23535734
46. Walsh KM, Codd V, Smirnov IV, Rice T, Decker PA, et al. (2014) Variants near TERT and TERC influencing telomere length are associated with high-grade glioma risk. Nat Genet 46 : 731–735. doi: 10.1038/ng.3004 24908248
47. Pooley KA, Bojesen SE, Weischer M, Nielsen SF, Thompson D, et al. (2013) A genome-wide association scan (GWAS) for mean telomere length within the COGS project: identified loci show little association with hormone-related cancer risk. Hum Mol Genet 22 : 5056–5064. doi: 10.1093/hmg/ddt355 23900074
48. Yi X, Shay JW, Wright WE (2001) Quantitation of telomerase components and hTERT mRNA splicing patterns in immortal human cells. Nucleic Acids Res 29 : 4818–4825. 11726691
49. Saeboe-Larssen S, Fossberg E, Gaudernack G (2006) Characterization of novel alternative splicing sites in human telomerase reverse transcriptase (hTERT): analysis of expression and mutual correlation in mRNA isoforms from normal and tumour tissues. BMC Mol Biol 7 : 26. 16939641
50. Zhu S, Rousseau P, Lauzon C, Gandin V, Topisirovic I, et al. (2014) Inactive C-terminal telomerase reverse transcriptase insertion splicing variants are dominant-negative inhibitors of telomerase. Biochimie 101 : 93–103. doi: 10.1016/j.biochi.2013.12.023 24412622
51. Cooper TA (2005) Use of minigene systems to dissect alternative splicing elements. Methods 37 : 331–340. 16314262
52. Cristofari G, Lingner J (2006) Telomere length homeostasis requires that telomerase levels are limiting. EMBO J 25 : 565–574. 16424902
53. Deng CX, Wang RH (2003) Roles of BRCA1 in DNA damage repair: a link between development and cancer. Hum Mol Genet 12: R113–R123. 12668603
54. Huschtscha LI, Napier CE, Noble JR, Bower K, Au AY, et al. (2012) Enhanced isolation of fibroblasts from human skin explants. Biotechniques 53 : 239–244. doi: 10.2144/0000113939 23046507
55. Cohen SB, Reddel RR (2008) A sensitive direct human telomerase activity assay. Nat Methods 5 : 355–360. doi: 10.1038/nmeth.f.209 18376394
56. Wu YL, Dudognon C, Nguyen E, Hillion J, Pendino F, et al. (2006) Immunodetection of human telomerase reverse-transcriptase (hTERT) re-appraised: nucleolin and telomerase cross paths. J Cell Sci 119 : 2797–2806. 16772337
57. Tomlinson CG, Moye AL, Holien JK, Parker MW, Cohen SB, et al. (2015) Two-step mechanism involving active-site conformational changes regulates human telomerase DNA binding. Biochem J 465 : 347–357. doi: 10.1042/BJ20140922 25365545
58. Jurczyluk J, Nouwens AS, Holien JK, Adams TE, Lovrecz GO, et al. (2011) Direct involvement of the TEN domain at the active site of human telomerase. Nucleic Acids Res 39 : 1774–1788. doi: 10.1093/nar/gkq1083 21051362
59. Cesare AJ, Kaul Z, Cohen SB, Napier CE, Pickett HA, et al. (2009) Spontaneous occurrence of telomeric DNA damage response in the absence of chromosome fusions. Nat Struct Mol Biol 16 : 1244–1251. doi: 10.1038/nsmb.1725 19935685
Štítky
Genetika Reprodukčná medicína
Článek Germline Mutations Confer Susceptibility to Acute Lymphoblastic Leukemia and ThrombocytopeniaČlánek Multiple In Vivo Biological Processes Are Mediated by Functionally Redundant Activities of andČlánek Temporal Expression Profiling Identifies Pathways Mediating Effect of Causal Variant on PhenotypeČlánek Simultaneous DNA and RNA Mapping of Somatic Mitochondrial Mutations across Diverse Human CancersČlánek A Legume Genetic Framework Controls Infection of Nodules by Symbiotic and Endophytic BacteriaČlánek The Eukaryotic-Like Ser/Thr Kinase PrkC Regulates the Essential WalRK Two-Component System inČlánek The Yeast GSK-3 Homologue Mck1 Is a Key Controller of Quiescence Entry and Chronological LifespanČlánek The Role of -Mediated Epigenetic Silencing in the Population Dynamics of Transposable Elements in
Článok vyšiel v časopisePLOS Genetics
Najčítanejšie tento týždeň
2015 Číslo 6- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
-
Všetky články tohto čísla
- Expression of Concern: RNAi-Dependent and Independent Control of LINE1 Accumulation and Mobility in Mouse Embryonic Stem Cells
- Orphan Genes Find a Home: Interspecific Competition and Gene Network Evolution
- Minor Cause—Major Effect: A Novel Mode of Control of Bistable Gene Expression
- Germline Mutations Confer Susceptibility to Acute Lymphoblastic Leukemia and Thrombocytopenia
- Leveraging Identity-by-Descent for Accurate Genotype Inference in Family Sequencing Data
- Is Required for the Expression of Principal Recognition Molecules That Control Axon Targeting in the Retina
- Epigenetic Aging Signatures Are Coherently Modified in Cancer
- Silencing of DNase Colicin E8 Gene Expression by a Complex Nucleoprotein Assembly Ensures Timely Colicin Induction
- A Transposable Element within the Non-canonical Telomerase RNA of Modulates Telomerase in Response to DNA Damage
- The Orphan Gene Regulates Dauer Development and Intraspecific Competition in Nematodes by Copy Number Variation
- 9--13,14-Dihydroretinoic Acid Is an Endogenous Retinoid Acting as RXR Ligand in Mice
- The DnaA Protein Is Not the Limiting Factor for Initiation of Replication in
- FGFR3 Deficiency Causes Multiple Chondroma-like Lesions by Upregulating Hedgehog Signaling
- Multiple Changes of Gene Expression and Function Reveal Genomic and Phenotypic Complexity in SLE-like Disease
- Directed Evolution of RecA Variants with Enhanced Capacity for Conjugational Recombination
- The Regulatory T Cell Lineage Factor Foxp3 Regulates Gene Expression through Several Distinct Mechanisms Mostly Independent of Direct DNA Binding
- MreB-Dependent Inhibition of Cell Elongation during the Escape from Competence in
- DNA Damage Regulates Translation through β-TRCP Targeting of CReP
- Multiple In Vivo Biological Processes Are Mediated by Functionally Redundant Activities of and
- The Analysis of () Mutants Reveals Differences in the Fusigenic Potential among Telomeres
- The Causative Gene in Chanarian Dorfman Syndrome Regulates Lipid Droplet Homeostasis in .
- Temporal Expression Profiling Identifies Pathways Mediating Effect of Causal Variant on Phenotype
- The . Accessory Helicase PcrA Facilitates DNA Replication through Transcription Units
- AKTIP/Ft1, a New Shelterin-Interacting Factor Required for Telomere Maintenance
- Npvf: Hypothalamic Biomarker of Ambient Temperature Independent of Nutritional Status
- Transfer RNAs Mediate the Rapid Adaptation of to Oxidative Stress
- Connecting Circadian Genes to Neurodegenerative Pathways in Fruit Flies
- Response to “Ribosome Rescue and Translation Termination at Non-standard Stop Codons by ICT1 in Mammalian Mitochondria”
- Response to the Formal Letter of Z. Chrzanowska-Lightowlers and R. N. Lightowlers Regarding Our Article “Ribosome Rescue and Translation Termination at Non-Standard Stop Codons by ICT1 in Mammalian Mitochondria”
- Simultaneous DNA and RNA Mapping of Somatic Mitochondrial Mutations across Diverse Human Cancers
- Regulation of Insulin Receptor Trafficking by Bardet Biedl Syndrome Proteins
- Altered Levels of Mitochondrial DNA Are Associated with Female Age, Aneuploidy, and Provide an Independent Measure of Embryonic Implantation Potential
- Non-reciprocal Interspecies Hybridization Barriers in the Capsella Genus Are Established in the Endosperm
- Canine Spontaneous Head and Neck Squamous Cell Carcinomas Represent Their Human Counterparts at the Molecular Level
- Genetic Changes to a Transcriptional Silencer Element Confers Phenotypic Diversity within and between Species
- Functional Assessment of Disease-Associated Regulatory Variants Using a Versatile Dual Colour Transgenesis Strategy in Zebrafish
- Translational Upregulation of an Individual p21 Transcript Variant by GCN2 Regulates Cell Proliferation and Survival under Nutrient Stress
- Independent Neuronal Origin of Seizures and Behavioral Comorbidities in an Animal Model of a Severe Childhood Genetic Epileptic Encephalopathy
- The Human Blood Metabolome-Transcriptome Interface
- A Common Cancer Risk-Associated Allele in the Locus Encodes a Dominant Negative Inhibitor of Telomerase
- A Legume Genetic Framework Controls Infection of Nodules by Symbiotic and Endophytic Bacteria
- The Eukaryotic-Like Ser/Thr Kinase PrkC Regulates the Essential WalRK Two-Component System in
- The Yeast GSK-3 Homologue Mck1 Is a Key Controller of Quiescence Entry and Chronological Lifespan
- Dissection of a Complex Disease Susceptibility Region Using a Bayesian Stochastic Search Approach to Fine Mapping
- Exome Sequencing of Phenotypic Extremes Identifies and as Interacting Modifiers of Chronic Infection in Cystic Fibrosis
- The Role of -Mediated Epigenetic Silencing in the Population Dynamics of Transposable Elements in
- Ancestral Chromatin Configuration Constrains Chromatin Evolution on Differentiating Sex Chromosomes in
- Abnormal Activation of BMP Signaling Causes Myopathy in Null Mice
- Reproductive Mode and the Evolution of Genome Size and Structure in Nematodes
- Replication and Active Partition of Integrative and Conjugative Elements (ICEs) of the SXT/R391 Family: The Line between ICEs and Conjugative Plasmids Is Getting Thinner
- Motor and Sensory Deficits in the Mice Result from Mutation of the ESCRT Component HGS
- Senescence in the Sbds-Deficient Murine Pancreas: Cell-Type Specific Consequences of Translation Insufficiency
- Lipophorin Receptors Recruit the Lipoprotein LTP to the Plasma Membrane to Mediate Lipid Uptake
- Separable Crossover-Promoting and Crossover-Constraining Aspects of Zip1 Activity during Budding Yeast Meiosis
- Context-Dependent Functional Divergence of the Notch Ligands DLL1 and DLL4
- Multilayered Organization of Jasmonate Signalling in the Regulation of Root Growth
- Necrotic Cells Actively Attract Phagocytes through the Collaborative Action of Two Distinct PS-Exposure Mechanisms
- A Novel Feedback Loop That Controls Bimodal Expression of Genetic Competence
- PLOS Genetics
- Archív čísel
- Aktuálne číslo
- Informácie o časopise
Najčítanejšie v tomto čísle- Non-reciprocal Interspecies Hybridization Barriers in the Capsella Genus Are Established in the Endosperm
- Translational Upregulation of an Individual p21 Transcript Variant by GCN2 Regulates Cell Proliferation and Survival under Nutrient Stress
- Exome Sequencing of Phenotypic Extremes Identifies and as Interacting Modifiers of Chronic Infection in Cystic Fibrosis
- The Human Blood Metabolome-Transcriptome Interface
Prihlásenie#ADS_BOTTOM_SCRIPTS#Zabudnuté hesloZadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.
- Časopisy