#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Uncoupling of Molecular Maturation from Peripheral Target Innervation in Nociceptors Expressing a Chimeric TrkA/TrkC Receptor


Neurotrophins and their receptors control a number of cellular processes, such as survival, gene expression and axonal growth, by activating multiple signalling pathways in peripheral neurons. Whether each of these pathways controls a distinct developmental process remains unknown. Here we describe a novel knock-in mouse model expressing a chimeric TrkA/TrkC (TrkAC) receptor from TrkA locus. In these mice, prospective nociceptors survived, segregated into appropriate peptidergic and nonpeptidergic subsets, projected normally to distinct laminae of the dorsal spinal cord, but displayed aberrant peripheral target innervation. This study provides the first in vivo evidence that intracellular parts of different Trk receptors are interchangeable to promote survival and maturation of nociceptors and shows that these developmental processes can be uncoupled from peripheral target innervation. Moreover, adult homozygous TrkAC knock-in mice displayed severe deficits in acute and tissue injury-induced pain, representing the first viable adult Trk mouse mutant with a pain phenotype.


Vyšlo v časopise: Uncoupling of Molecular Maturation from Peripheral Target Innervation in Nociceptors Expressing a Chimeric TrkA/TrkC Receptor. PLoS Genet 10(2): e32767. doi:10.1371/journal.pgen.1004081
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004081

Souhrn

Neurotrophins and their receptors control a number of cellular processes, such as survival, gene expression and axonal growth, by activating multiple signalling pathways in peripheral neurons. Whether each of these pathways controls a distinct developmental process remains unknown. Here we describe a novel knock-in mouse model expressing a chimeric TrkA/TrkC (TrkAC) receptor from TrkA locus. In these mice, prospective nociceptors survived, segregated into appropriate peptidergic and nonpeptidergic subsets, projected normally to distinct laminae of the dorsal spinal cord, but displayed aberrant peripheral target innervation. This study provides the first in vivo evidence that intracellular parts of different Trk receptors are interchangeable to promote survival and maturation of nociceptors and shows that these developmental processes can be uncoupled from peripheral target innervation. Moreover, adult homozygous TrkAC knock-in mice displayed severe deficits in acute and tissue injury-induced pain, representing the first viable adult Trk mouse mutant with a pain phenotype.


Zdroje

1. CrowleyC, SpencerSD, NishimuraMC, ChenKS, Pitts-MeekS, et al. (1994) Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell 76: 1001–1011.

2. SmeyneRJ, KleinR, SchnappA, LongLK, BryantS, et al. (1994) Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene. Nature 368: 246–249.

3. WhiteFA, Silos-SantiagoI, MolliverDC, NishimuraM, PhillipsH, et al. (1996) Synchronous onset of NGF and TrkA survival dependence in developing dorsal root ganglia. J Neurosci 16: 4662–4672.

4. PatelTD, JackmanA, RiceFL, KuceraJ, SniderWD (2000) Development of sensory neurons in the absence of NGF/TrkA signaling in vivo. Neuron 25: 345–357.

5. LuoW, WickramasingheSR, SavittJM, GriffinJW, DawsonTM, et al. (2007) A hierarchical NGF signaling cascade controls Ret-dependent and Ret-independent events during development of nonpeptidergic DRG neurons. Neuron 54: 739–754.

6. Levi-MontalciniR, MeyerH, HamburgerV (1954) In vitro experiments on the effects of mouse sarcomas 180 and 37 on the spinal and sympathetic ganglia of the chick embryo. Cancer Res 14: 49–57.

7. TuckerKL, MeyerM, BardeYA (2001) Neurotrophins are required for nerve growth during development. Nat Neurosci 4: 29–37.

8. WickramasingheSR, AlvaniaRS, RamananN, WoodJN, MandaiK, et al. (2008) Serum response factor mediates NGF-dependent target innervation by embryonic DRG sensory neurons. Neuron 58: 532–545.

9. MoqrichA, EarleyTJ, WatsonJ, AndahazyM, BackusC, et al. (2004) Expressing TrkC from the TrkA locus causes a subset of dorsal root ganglia neurons to switch fate. Nat Neurosci 7: 812–818.

10. JullienJ, GuiliV, ReichardtLF, RudkinBB (2002) Molecular kinetics of nerve growth factor receptor trafficking and activation. J Biol Chem 277: 38700–38708.

11. WatsonFL, PorcionattoMA, BhattacharyyaA, StilesCD, SegalRA (1999) TrkA glycosylation regulates receptor localization and activity. J Neurobiol 39: 323–336.

12. MarkusA, ZhongJ, SniderWD (2002) Raf and akt mediate distinct aspects of sensory axon growth. Neuron 35: 65–76.

13. ChenCL, BroomDC, LiuY, de NooijJC, LiZ, et al. (2006) Runx1 determines nociceptive sensory neuron phenotype and is required for thermal and neuropathic pain. Neuron 49: 365–377.

14. GasconE, GaillardS, MalapertP, LiuY, Rodat-DespoixL, et al. (2010) Hepatocyte growth factor-Met signaling is required for Runx1 extinction and peptidergic differentiation in primary nociceptive neurons. J Neurosci 30: 12414–12423.

15. GasconE, MoqrichA (2010) Heterogeneity in primary nociceptive neurons: from molecules to pathology. Arch Pharm Res 33: 1489–1507.

16. WoolfCJ, MaQ (2007) Nociceptors–noxious stimulus detectors. Neuron 55: 353–364.

17. MolliverDC, WrightDE, LeitnerML, ParsadanianAS, DosterK, et al. (1997) IB4-binding DRG neurons switch from NGF to GDNF dependence in early postnatal life. Neuron 19: 849–861.

18. ZylkaMJ, RiceFL, AndersonDJ (2005) Topographically distinct epidermal nociceptive circuits revealed by axonal tracers targeted to Mrgprd. Neuron 45: 17–25.

19. GuoT, MandaiK, CondieBG, WickramasingheSR, CapecchiMR, et al. (2011) An evolving NGF-Hoxd1 signaling pathway mediates development of divergent neural circuits in vertebrates. Nat Neurosci 14: 31–36.

20. MandaiK, GuoT, St HillaireC, MeabonJS, KanningKC, et al. (2009) LIG family receptor tyrosine kinase-associated proteins modulate growth factor signals during neural development. Neuron 63: 614–627.

21. Benjamini YHY (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Statist Soc Ser B (Methodological) 57: 289–300.

22. LuoW, EnomotoH, RiceFL, MilbrandtJ, GintyDD (2009) Molecular identification of rapidly adapting mechanoreceptors and their developmental dependence on ret signaling. Neuron 64: 841–856.

23. UgoliniG, MarinelliS, CovaceuszachS, CattaneoA, PavoneF (2007) The function neutralizing anti-TrkA antibody MNAC13 reduces inflammatory and neuropathic pain. Proc Natl Acad Sci U S A 104: 2985–2990.

24. DickensonAH, SullivanAF (1987) Peripheral origins and central modulation of subcutaneous formalin-induced activity of rat dorsal horn neurones. Neurosci Lett 83: 207–211.

25. ChaoMV (2003) Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 4: 299–309.

26. ArevaloJC, WaiteJ, RajagopalR, BeynaM, ChenZY, et al. (2006) Cell survival through Trk neurotrophin receptors is differentially regulated by ubiquitination. Neuron 50: 549–559.

27. KatoH, OhnoK, HashimotoK, SatoK (2004) Synectin in the nervous system: expression pattern and potential as a binding partner of neurotrophin receptors. FEBS Lett 572: 123–128.

28. NakamuraT, KomiyaM, SoneK, HiroseE, GotohN, et al. (2002) Grit, a GTPase-activating protein for the Rho family, regulates neurite extension through association with the TrkA receptor and N-Shc and CrkL/Crk adapter molecules. Mol Cell Biol 22: 8721–8734.

29. MortimerD, PujicZ, VaughanT, ThompsonAW, FeldnerJ, et al. (2010) Axon guidance by growth-rate modulation. Proc Natl Acad Sci U S A 107: 5202–5207.

30. NikoletopoulouV, LickertH, FradeJM, RencurelC, GiallonardoP, et al. (2010) Neurotrophin receptors TrkA and TrkC cause neuronal death whereas TrkB does not. Nature 467: 59–63.

31. PostigoA, CalellaAM, FritzschB, KnipperM, KatzD, et al. (2002) Distinct requirements for TrkB and TrkC signaling in target innervation by sensory neurons. Genes Dev 16: 633–645.

32. IndoY (2001) Molecular basis of congenital insensitivity to pain with anhidrosis (CIPA): mutations and polymorphisms in TRKA (NTRK1) gene encoding the receptor tyrosine kinase for nerve growth factor. Hum Mutat 18: 462–471.

33. PezetS, McMahonSB (2006) Neurotrophins: mediators and modulators of pain. Annu Rev Neurosci 29: 507–538.

34. AbrahamsenB, ZhaoJ, AsanteCO, CendanCM, MarshS, et al. (2008) The cell and molecular basis of mechanical, cold, and inflammatory pain. Science 321: 702–705.

35. McMahonSB, BennettDL, PriestleyJV, SheltonDL (1995) The biological effects of endogenous nerve growth factor on adult sensory neurons revealed by a trkA-IgG fusion molecule. Nat Med 1: 774–780.

36. DiamondJ, HolmesM, CoughlinM (1992) Endogenous NGF and nerve impulses regulate the collateral sprouting of sensory axons in the skin of the adult rat. J Neurosci 12: 1454–1466.

37. GentlemanRC, CareyVJ, BatesDM, BolstadB, DettlingM, et al. (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5: R80.

38. SmythGK, SpeedT (2003) Normalization of cDNA microarray data. Methods 31: 265–273.

39. Smyth GK (2005) Limma: linear models for microarray data. Bioinformatics and Computational Biology Solutions using R and Bioconductor, R Gentleman, V Carey, S Dudoit, R Irizarry, W Huber. New York: Springer. pp. 397–420.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#