#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Extreme Population Differences in the Human Zinc Transporter ZIP4 (SLC39A4) Are Explained by Positive Selection in Sub-Saharan Africa


Extreme differences in allele frequency between West Africans and Eurasians were observed for a leucine-to-valine substitution (Leu372Val) in the human intestinal zinc uptake transporter, ZIP4, yet no further evidence was found for a selective sweep around the ZIP4 gene (SLC39A4). By interrogating allele frequencies in more than 100 diverse human populations and resequencing Neanderthal DNA, we confirmed the ancestral state of this locus and found a strong geographical gradient for the derived allele (Val372), with near fixation in West Africa. In extensive coalescent simulations, we show that the extreme differences in allele frequency, yet absence of a classical sweep signature, can be explained by the effect of a local recombination hotspot, together with directional selection favoring the Val372 allele in Sub-Saharan Africans. The possible functional effect of the Leu372Val substitution, together with two pathological mutations at the same codon (Leu372Pro and Leu372Arg) that cause acrodermatitis enteropathica (a disease phenotype characterized by extreme zinc deficiency), was investigated by transient overexpression of human ZIP4 protein in HeLa cells. Both acrodermatitis mutations cause absence of the ZIP4 transporter cell surface expression and nearly absent zinc uptake, while the Val372 variant displayed significantly reduced surface protein expression, reduced basal levels of intracellular zinc, and reduced zinc uptake in comparison with the Leu372 variant. We speculate that reduced zinc uptake by the ZIP4-derived Val372 isoform may act by starving certain pathogens of zinc, and hence may have been advantageous in Sub-Saharan Africa. Moreover, these functional results may indicate differences in zinc homeostasis among modern human populations with possible relevance for disease risk.


Vyšlo v časopise: Extreme Population Differences in the Human Zinc Transporter ZIP4 (SLC39A4) Are Explained by Positive Selection in Sub-Saharan Africa. PLoS Genet 10(2): e32767. doi:10.1371/journal.pgen.1004128
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004128

Souhrn

Extreme differences in allele frequency between West Africans and Eurasians were observed for a leucine-to-valine substitution (Leu372Val) in the human intestinal zinc uptake transporter, ZIP4, yet no further evidence was found for a selective sweep around the ZIP4 gene (SLC39A4). By interrogating allele frequencies in more than 100 diverse human populations and resequencing Neanderthal DNA, we confirmed the ancestral state of this locus and found a strong geographical gradient for the derived allele (Val372), with near fixation in West Africa. In extensive coalescent simulations, we show that the extreme differences in allele frequency, yet absence of a classical sweep signature, can be explained by the effect of a local recombination hotspot, together with directional selection favoring the Val372 allele in Sub-Saharan Africans. The possible functional effect of the Leu372Val substitution, together with two pathological mutations at the same codon (Leu372Pro and Leu372Arg) that cause acrodermatitis enteropathica (a disease phenotype characterized by extreme zinc deficiency), was investigated by transient overexpression of human ZIP4 protein in HeLa cells. Both acrodermatitis mutations cause absence of the ZIP4 transporter cell surface expression and nearly absent zinc uptake, while the Val372 variant displayed significantly reduced surface protein expression, reduced basal levels of intracellular zinc, and reduced zinc uptake in comparison with the Leu372 variant. We speculate that reduced zinc uptake by the ZIP4-derived Val372 isoform may act by starving certain pathogens of zinc, and hence may have been advantageous in Sub-Saharan Africa. Moreover, these functional results may indicate differences in zinc homeostasis among modern human populations with possible relevance for disease risk.


Zdroje

1. RinkL, HaaseH (2007) Zinc homeostasis and immunity. Trends Immunol 28: 1–4.

2. SwindellWR (2011) Metallothionein and the biology of aging. Ageing Res Rev 10: 132–145.

3. HoE, AmesBN (2002) Low intracellular zinc induces oxidative DNA damage, disrupts p53, NFkappa B, and AP1 DNA binding, and affects DNA repair in a rat glioma cell line. Proc Natl Acad Sci U S A 99: 16770–16775.

4. HaaseH, RinkL (2009) Functional significance of zinc-related signaling pathways in immune cells. Annu Rev Nutr 29: 133–152.

5. JansenJ, KargesW, RinkL (2009) Zinc and diabetes–clinical links and molecular mechanisms. J Nutr Biochem 20: 399–417.

6. AlamS, KelleherSL (2012) Cellular mechanisms of zinc dysregulation: a perspective on zinc homeostasis as an etiological factor in the development and progression of breast cancer. Nutrients 4: 875–903.

7. Dufner-beattieJ, WangF, KuoY, GitschierJ, EideD, et al. (2003) The acrodermatitis enteropathica gene ZIP4 encodes a tissue-specific, zinc-regulated zinc transporter in mice. J Biol Chem 278: 33474–33481.

8. WangK, ZhouB, KuoY-M, ZemanskyJ, GitschierJ (2002) A novel member of a zinc transporter family is defective in acrodermatitis enteropathica. Am J Hum Genet 71: 66–73.

9. KüryS, DrénoB, BézieauS, GiraudetS, KharfiM, et al. (2002) Identification of SLC39A4, a gene involved in acrodermatitis enteropathica. Nat Genet 31: 239–240.

10. WangF, KimB-E, Dufner-BeattieJ, PetrisMJ, AndrewsG, et al. (2004) Acrodermatitis enteropathica mutations affect transport activity, localization and zinc-responsive trafficking of the mouse ZIP4 zinc transporter. Hum Mol Genet 13: 563–571.

11. MoynahanEJ (1974) Acrodermatitis enteropathica: a lethal inherited human zinc-deficiency disorder. Lancet 304: 399–400.

12. NeldnerKH, HambidgeKM (1975) Zinc therapy of acrodermatitis enteropathica. N Engl J Med 292: 879–882.

13. GeiserJ, VenkenKJT, De LisleRC, AndrewsGK (2012) A Mouse Model of Acrodermatitis Enteropathica: Loss of Intestine Zinc Transporter ZIP4 (Slc39a4) Disrupts the Stem Cell Niche and Intestine Integrity. PLoS Genet 8: e1002766.

14. BarreiroLB, LavalG, QuachH, PatinE, Quintana-MurciL (2008) Natural selection has driven population differentiation in modern humans. Nat Genet 40: 340–345.

15. XueY, ZhangX, HuangN, DalyA, GillsonCJ, et al. (2009) Population differentiation as an indicator of recent positive selection in humans: an empirical evaluation. Genetics 183: 1065–1077.

16. The 1000 Genomes Project Consortium (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 135: 0–9.

17. FrazerKA, BallingerDG, CoxDR, HindsDA, StuveLL, et al. (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449: 851–861.

18. CannHM, de TomaC, CazesL, LegrandM-F, MorelV, et al. (2002) A human genome diversity cell line panel. Science (New York, NY) 296: 261–262.

19. HoferT, FollM, ExcoffierL (2012) Evolutionary forces shaping genomic islands of population differentiation in humans. BMC Genomics 13: 107.

20. HoferT, RayN, WegmannD, ExcoffierL (2009) Large allele frequency differences between human continental groups are more likely to have occurred by drift during range expansions than by selection. Ann Hum Genet 73: 95–108.

21. GardnerM, WilliamsonS, CasalsF, BoschE, NavarroA, et al. (2007) Extreme individual marker F(ST) values do not imply population-specific selection in humans: the NRG1 example. Hum Genet 121: 759–762.

22. PickrellJK, CoopG, NovembreJ, KudaravalliS, LiJZ, et al. (2009) Signals of recent positive selection in a worldwide sample of human populations. Genome Res 19: 826–837.

23. VoightBF, KudaravalliS, WenX, PritchardJK (2006) A map of recent positive selection in the human genome. PLoS Biol 4: e72.

24. TangK, ThorntonKR, StonekingM (2007) A New Approach for Using Genome Scans to Detect Recent Positive Selection in the Human Genome. PLoS Biol 5: e171.

25. CarlsonCS, ThomasDJ, EberleMA, SwansonJE, LivingstonRJ, et al. (2005) Genomic regions exhibiting positive selection identified from dense genotype data. Genome Res 15: 1553–1565.

26. Osier MV, CheungK-H, KiddJR, PakstisAJ, MillerPL, et al. (2002) ALFRED: An allele frequency database for anthropology. Am J Phys Anthropol 119: 77–83.

27. RajeevanH, Osier MV, CheungK-H, DengH, DruskinL, et al. (2003) ALFRED: the ALelle FREquency Database. Update. Nucleic Acids Res 31: 270–271.

28. GreenRE, KrauseJ, BriggsAW, MaricicT, StenzelU, et al. (2010) A draft sequence of the Neandertal genome. Science 328: 710–722.

29. RosasA, Martínez-MazaC, BastirM, García-TaberneroA, Lalueza-FoxC, et al. (2006) Paleobiology and comparative morphology of a late Neandertal sample from El Sidron, Asturias, Spain. Proc Natl Acad Sci U S A 103: 19266–19271.

30. MeyerM, KircherM, GansaugeM-T, LiH, RacimoF, et al. (2012) A high-coverage genome sequence from an archaic Denisovan individual. Science (New York, NY) 338: 222–226.

31. SchaffnerSF, FooC, GabrielS, ReichD, DalyMJ, et al. (2005) Calibrating a coalescent simulation of human genome sequence variation. Genome Res 15: 1576–1583.

32. LiC-R, YanS-M, ShenD-B, LiQ, ShaoJ-P, et al. (2010) One novel homozygous mutation of SLC39A4 gene in a Chinese patient with acrodermatitis enteropathica. Arch Dermatol Res 302: 315–317.

33. AdzhubeiIA, SchmidtS, PeshkinL, RamenskyVE, GerasimovaA, et al. (2010) A method and server for predicting damaging missense mutations. Nat Methods 7: 248–249.

34. NgPC, HenikoffS (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31: 3812–3814.

35. HamblinMT, Di RienzoA (2000) Detection of the signature of natural selection in humans: evidence from the Duffy blood group locus. Am J Hum Genet 66: 1669–1679.

36. HamblinMT, ThompsonEE, Di RienzoA (2002) Complex signatures of natural selection at the Duffy blood group locus. Am J Hum Genet 70: 369–383.

37. GrankaJM, HennBM, GignouxCR, KiddJM, BustamanteCD, et al. (2012) Limited evidence for classic selective sweeps in African populations. Genetics 192: 1049–1064.

38. TennessenJA, MadeoyJ, AkeyJM (2010) Signatures of positive selection apparent in a small sample of human exomes. Genome Res 20: 1327–1334.

39. WoodET, StoverDA, SlatkinM, NachmanMW, HammerMF (2005) The β-Globin Recombinational Hotspot Reduces the Effects of Strong Selection around HbC, a Recently Arisen Mutation Providing Resistance to Malaria. Am J Hum Genet 77: 637–642.

40. BelezaS, SantosAM, McEvoyB, AlvesI, MartinhoC, et al. (2013) The timing of pigmentation lightening in Europeans. Mol Biol Evol 30: 24–35.

41. ExcoffierL, RayN (2008) Surfing during population expansions promotes genetic revolutions and structuration. Trends Ecol Evol 23: 347–351.

42. HennBM, BotiguéLR, GravelS, WangW, BrisbinA, et al. (2012) Genomic ancestry of North Africans supports back-to-Africa migrations. PLoS Genet 8: e1002397.

43. SchmittS, KüryS, GiraudM, DrénoB, KharfiM, et al. (2009) An update on mutations of the SLC39A4 gene in acrodermatitis enteropathica. Hum Mutat 30: 926–933.

44. RosenbloomKR, DreszerTR, LongJC, MalladiVS, SloanCA, et al. (2012) ENCODE whole-genome data in the UCSC Genome Browser: update 2012. Nucleic Acids Res 40: D912–7.

45. SiebertF, LühkenG, PallaufJ, ErhardtG (2012) Mutation in porcine Zip4-like zinc transporter is associated with pancreatic zinc concentration and apparent zinc absorption. Br J Nutr 109: 969–76.

46. KochanI (1973) The role of iron in bacterial infections, with special consideration of host-tubercle bacillus interaction. Curr Top Microbiol Immunol 60: 1–30.

47. HoodMI, SkaarEP (2012) Nutritional immunity: transition metals at the pathogen-host interface. Nat Rev Microbiol 10: 525–537.

48. WeinbergED (1977) Infection and iron metabolism. Am J Clin Nutr 30: 1485–1490.

49. Kehl-FieTE, SkaarEP (2010) Nutritional immunity beyond iron: a role for manganese and zinc. Curr Opin Chem Biol 14: 218–224.

50. Beker AydemirT, ChangS-M, GuthrieGJ, MakiAB, RyuM-S, et al. (2012) Zinc transporter ZIP14 functions in hepatic zinc, iron and glucose homeostasis during the innate immune response (endotoxemia). PloS One 7: e48679.

51. ColeCR, GrantFK, Swaby-ellisED, SmithJL, JacquesA, et al. (2010) Zinc and iron deficiency and their interrelations in low-income African American and Hispanic children in Atlanta. Am J Clin Nutr 91: 1027–1034.

52. HoqueKM, RajendranVM, BinderHJ (2005) Zinc inhibits cAMP-stimulated Cl secretion via basolateral K-channel blockade in rat ileum. Am J Physiol Gastrointest Liver Physiol 288: G956–63.

53. ScrimgeourAG, LukaskiHC (2008) Zinc and diarrheal disease: current status and future perspectives. Curr Opin Clin Nutr Metab Care 11: 711–717.

54. SladekR, RocheleauG, RungJ, DinaC, ShenL, et al. (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445: 881–885.

55. WuC, LiD, JiaW, HuZ, ZhouY, et al. (2013) Genome-wide association study identifies common variants in SLC39A6 associated with length of survival in esophageal squamous-cell carcinoma. Nat Genet 45: 632–8.

56. RosenbergNA (2006) Standardized subsets of the HGDP-CEPH Human Genome Diversity Cell Line Panel, accounting for atypical and duplicated samples and pairs of close relatives. Ann Hum Genet 70: 841–847.

57. Berniell-LeeG, CalafellF, BoschE, HeyerE, SicaL, et al. (2009) Genetic and demographic implications of the Bantu expansion: insights from human paternal lineages. Mol Biol Evol 26: 1581–1589.

58. KrauseJ, Lalueza-FoxC, OrlandoL, EnardW, GreenRE, et al. (2007) The derived FOXP2 variant of modern humans was shared with Neandertals. Curr Biol 17: 1908–1912.

59. Lalueza-FoxC, RömplerH, CaramelliD, StäubertC, CatalanoG, et al. (2007) A melanocortin 1 receptor allele suggests varying pigmentation among Neanderthals. Science 318: 1453–1455.

60. Lalueza-FoxC, GigliE, de la RasillaM, ForteaJ, RosasA (2009) Bitter taste perception in Neanderthals through the analysis of the TAS2R38 gene. Biol Lett 5: 809–811.

61. BriggsAW, GoodJM, GreenRE, KrauseJ, MaricicT, et al. (2009) Targeted retrieval and analysis of five Neandertal mtDNA genomes. Science 325: 318–321.

62. MaricicT, GüntherV, GeorgievO, GehreS, CurlinM, et al. (2012) A Recent Evolutionary Change Affects a Regulatory Element in the Human FOXP2 Gene. Mol Biol Evol 30: 844–52.

63. ForteaJ, de la RasillaM, García-TaberneroA, GigliE, RosasA, et al. (2008) Excavation protocol of bone remains for Neandertal DNA analysis in El Sidrón Cave (Asturias, Spain). J Hum Evol 55: 353–357.

64. Torres TDe, OrtizJ, GrünR, EgginsS, ValladaH, et al. (2010) Dating of the hominid (Homo Neanderthalensis) remains accumulation from el Sidrón cave (Piloña, Asturias, North Apain): an example of a multi-methodological approach to the dating of upper pleistocene sites. Archaeometry 52: 680–705.

65. GrossmanSR, AndersenKG, ShlyakhterI, TabriziS, WinnickiS, et al. (2013) Identifying recent adaptations in large-scale genomic data. Cell 152: 703–713.

66. GrossmanSR, ShlyakhterI, ShylakhterI, KarlssonEK, ByrneEH, et al. (2010) A composite of multiple signals distinguishes causal variants in regions of positive selection. Science 327: 883–886.

67. FennerJN (2005) Cross-cultural estimation of the human generation interval for use in genetics-based population divergence studies. Am J Phys Anthropol 128: 415–423.

68. PybusM, Dall'olioGM, LuisiP, UzkudunM, Carreño-TorresA, et al. (2014) 1000 Genomes Selection Browser 1.0: a genome browser dedicated to signatures of natural selection in modern humans. Nucleic Acids Res 42(D1): D903–D909.

69. WeirBS, HillWG (2002) Estimating F-statistics. Annu Rev Genet 36: 721–750.

70. SabetiPC, VarillyP, FryB, LohmuellerJ, HostetterE, et al. (2007) Genome-wide detection and characterization of positive selection in human populations. Nature 449: 913–918.

71. KambeT, AndrewsGK (2009) Novel Proteolytic Processing of the Ectodomain of the Zinc Transporter ZIP4 (SLC39A4) during Zinc Deficiency Is Inhibited by Acrodermatitis Enteropathica Mutations. Mol Cell Biol 29: 129–139.

72. Huerta-CepasJ, Capella-GutierrezS, PryszczLP, DenisovI, KormesD, et al. (2011) PhylomeDB v3.0: an expanding repository of genome-wide collections of trees, alignments and phylogeny-based orthology and paralogy predictions. Nucleic Acids Res 39: D556–60.

73. NotredameC, HigginsDG, HeringaJ (2000) T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol 302: 205–217.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#