#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Integrin α PAT-2/CDC-42 Signaling Is Required for Muscle-Mediated Clearance of Apoptotic Cells in


Clearance of apoptotic cells by engulfment plays an important role in the homeostasis and development of multicellular organisms. Despite the fact that the recognition of apoptotic cells by engulfment receptors is critical in inducing the engulfment process, the molecular mechanisms are still poorly understood. Here, we characterize a novel cell corpse engulfment pathway mediated by the integrin α subunit PAT-2 in Caenorhabditis elegans and show that it specifically functions in muscle-mediated engulfment during embryogenesis. Inactivation of pat-2 results in a defect in apoptotic cell internalization. The PAT-2 extracellular region binds to the surface of apoptotic cells in vivo, and the intracellular region may mediate signaling for engulfment. We identify essential roles of small GTPase CDC-42 and its activator UIG-1, a guanine-nucleotide exchange factor, in PAT-2–mediated cell corpse removal. PAT-2 and CDC-42 both function in muscle cells for apoptotic cell removal and are co-localized in growing muscle pseudopods around apoptotic cells. Our data suggest that PAT-2 functions through UIG-1 for CDC-42 activation, which in turn leads to cytoskeletal rearrangement and apoptotic cell internalization by muscle cells. Moreover, in contrast to PAT-2, the other integrin α subunit INA-1 and the engulfment receptor CED-1, which signal through the conserved signaling molecules CED-5 (DOCK180)/CED-12 (ELMO) or CED-6 (GULP) respectively, preferentially act in epithelial cells to mediate cell corpse removal during mid-embryogenesis. Our results show that different engulfing cells utilize distinct repertoires of receptors for engulfment at the whole organism level.


Vyšlo v časopise: Integrin α PAT-2/CDC-42 Signaling Is Required for Muscle-Mediated Clearance of Apoptotic Cells in. PLoS Genet 8(5): e32767. doi:10.1371/journal.pgen.1002663
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002663

Souhrn

Clearance of apoptotic cells by engulfment plays an important role in the homeostasis and development of multicellular organisms. Despite the fact that the recognition of apoptotic cells by engulfment receptors is critical in inducing the engulfment process, the molecular mechanisms are still poorly understood. Here, we characterize a novel cell corpse engulfment pathway mediated by the integrin α subunit PAT-2 in Caenorhabditis elegans and show that it specifically functions in muscle-mediated engulfment during embryogenesis. Inactivation of pat-2 results in a defect in apoptotic cell internalization. The PAT-2 extracellular region binds to the surface of apoptotic cells in vivo, and the intracellular region may mediate signaling for engulfment. We identify essential roles of small GTPase CDC-42 and its activator UIG-1, a guanine-nucleotide exchange factor, in PAT-2–mediated cell corpse removal. PAT-2 and CDC-42 both function in muscle cells for apoptotic cell removal and are co-localized in growing muscle pseudopods around apoptotic cells. Our data suggest that PAT-2 functions through UIG-1 for CDC-42 activation, which in turn leads to cytoskeletal rearrangement and apoptotic cell internalization by muscle cells. Moreover, in contrast to PAT-2, the other integrin α subunit INA-1 and the engulfment receptor CED-1, which signal through the conserved signaling molecules CED-5 (DOCK180)/CED-12 (ELMO) or CED-6 (GULP) respectively, preferentially act in epithelial cells to mediate cell corpse removal during mid-embryogenesis. Our results show that different engulfing cells utilize distinct repertoires of receptors for engulfment at the whole organism level.


Zdroje

1. BaehreckeEH 2002 How death shapes life during development. Nat Rev Mol Cell Biol 3 779 787

2. ReddienPWHorvitzHR 2004 The engulfment process of programmed cell death in caenorhabditis elegans. Annu Rev Cell Dev Biol 20 193 221

3. ErwigLPHensonPM 2008 Clearance of apoptotic cells by phagocytes. Cell Death Differ 15 243 250

4. Lacy-HulbertASmithAMTissireHBarryMCrowleyD 2007 Ulcerative colitis and autoimmunity induced by loss of myeloid alphav integrins. Proc Natl Acad Sci U S A 104 15823 15828

5. ElliottMRRavichandranKS 2010 Clearance of apoptotic cells: implications in health and disease. J Cell Biol 189 1059 1070

6. NagataSHanayamaRKawaneK 2010 Autoimmunity and the clearance of dead cells. Cell 140 619 630

7. Darland-RansomMWangXSunCLMapesJGengyo-AndoK 2008 Role of C. elegans TAT-1 protein in maintaining plasma membrane phosphatidylserine asymmetry. Science 320 528 531

8. GalvinBDKimSHorvitzHR 2008 Caenorhabditis elegans genes required for the engulfment of apoptotic corpses function in the cytotoxic cell deaths induced by mutations in lin-24 and lin-33. Genetics 179 403 417

9. KaoAWEisenhutRJMartensLHNakamuraAHuangA 2011 A neurodegenerative disease mutation that accelerates the clearance of apoptotic cells. Proc Natl Acad Sci U S A 108 4441 4446

10. AbramsJMWhiteKFesslerLIStellerH 1993 Programmed cell death during Drosophila embryogenesis. Development 117 29 43

11. BennettMRGibsonDFSchwartzSMTaitJF 1995 Binding and phagocytosis of apoptotic vascular smooth muscle cells is mediated in part by exposure of phosphatidylserine. Circ Res 77 1136 1142

12. DiniL 1998 Endothelial liver cell recognition of apoptotic peripheral blood lymphocytes. Biochem Soc Trans 26 635 639

13. WalshGMSextonDWBlaylockMGConveryCM 1999 Resting and cytokine-stimulated human small airway epithelial cells recognize and engulf apoptotic eosinophils. Blood 94 2827 2835

14. SavillJFadokV 2000 Corpse clearance defines the meaning of cell death. Nature 407 784 788

15. ParkDTosello-TrampontACElliottMRLuMHaneyLB 2007 BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 450 430 434

16. ParkSYJungMYLeeSJKangKBGratchevA 2009 Stabilin-1 mediates phosphatidylserine-dependent clearance of cell corpses in alternatively activated macrophages. J Cell Sci 122 3365 3373

17. ParkSYJungMYKimHJLeeSJKimSY 2008 Rapid cell corpse clearance by stabilin-2, a membrane phosphatidylserine receptor. Cell Death Differ 15 192 201

18. KobayashiNKarisolaPPena-CruzVDorfmanDMJinushiM 2007 TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells. Immunity 27 927 940

19. NakayamaMAkibaHTakedaKKojimaYHashiguchiM 2009 Tim-3 mediates phagocytosis of apoptotic cells and cross-presentation. Blood 113 3821 3830

20. SavillJDransfieldIHoggNHaslettC 1990 Vitronectin receptor-mediated phagocytosis of cells undergoing apoptosis. Nature 343 170 173

21. AlbertMLPearceSFFranciscoLMSauterBRoyP 1998 Immature dendritic cells phagocytose apoptotic cells via alphavbeta5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J Exp Med 188 1359 1368

22. ScottRSMcMahonEJPopSMReapEACaricchioR 2001 Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature 411 207 211

23. FadokVAVoelkerDRCampbellPACohenJJBrattonDL 1992 Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148 2207 2216

24. FadeelBXueD 2009 The ins and outs of phospholipid asymmetry in the plasma membrane: roles in health and disease. Crit Rev Biochem Mol Biol 44 264 277

25. MiyanishiMTadaKKoikeMUchiyamaYKitamuraT 2007 Identification of Tim4 as a phosphatidylserine receptor. Nature 450 435 439

26. ParkSYKimSYJungMYBaeDJKimIS 2008 Epidermal growth factor-like domain repeat of stabilin-2 recognizes phosphatidylserine during cell corpse clearance. Mol Cell Biol 28 5288 5298

27. NagataKOhashiKNakanoTAritaHZongC 1996 Identification of the product of growth arrest-specific gene 6 as a common ligand for Axl, Sky, and Mer receptor tyrosine kinases. J Biol Chem 271 30022 30027

28. AkakuraSSinghSSpataroMAkakuraRKimJI 2004 The opsonin MFG-E8 is a ligand for the alphavbeta5 integrin and triggers DOCK180-dependent Rac1 activation for the phagocytosis of apoptotic cells. Exp Cell Res 292 403 416

29. AlbertMLKimJIBirgeRB 2000 alphavbeta5 integrin recruits the CrkII-Dock180-rac1 complex for phagocytosis of apoptotic cells. Nat Cell Biol 2 899 905

30. WuYSinghSGeorgescuMMBirgeRB 2005 A role for Mer tyrosine kinase in alphavbeta5 integrin-mediated phagocytosis of apoptotic cells. J Cell Sci 118 539 553

31. ElliottMRZhengSParkDWoodsonRIReardonMA 2010 Unexpected requirement for ELMO1 in clearance of apoptotic germ cells in vivo. Nature 467 333 337

32. StuartLMTakahashiKShiLSavillJEzekowitzRA 2005 Mannose-binding lectin-deficient mice display defective apoptotic cell clearance but no autoimmune phenotype. J Immunol 174 3220 3226

33. KodamaTReddyPKishimotoCKriegerM 1988 Purification and characterization of a bovine acetyl low density lipoprotein receptor. Proc Natl Acad Sci U S A 85 9238 9242

34. GregoryCDDevittAMoffattO 1998 Roles of ICAM-3 and CD14 in the recognition and phagocytosis of apoptotic cells by macrophages. Biochem Soc Trans 26 644 649

35. SulstonJEHorvitzHR 1977 Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 56 110 156

36. KimbleJHirshD 1979 The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Dev Biol 70 396 417

37. SulstonJESchierenbergEWhiteJGThomsonJN 1983 The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100 64 119

38. RobertsonAThomsonN 1982 Morphology of programmed cell death in the ventral nerve cord of Caenorhabditis elegans larvae. J Embryol Exp Morphol 67 89 100

39. WuYCHorvitzHR 1998 The C. elegans cell corpse engulfment gene ced-7 encodes a protein similar to ABC transporters. Cell 93 951 960

40. ZhouZHartwiegEHorvitzHR 2001 CED-1 is a transmembrane receptor that mediates cell corpse engulfment in C. elegans. Cell 104 43 56

41. LiuQAHengartnerMO 1999 Human CED-6 encodes a functional homologue of the Caenorhabditis elegans engulfment protein CED-6. Curr Biol 9 1347 1350

42. YuXOderaSChuangCHLuNZhouZ 2006 C. elegans Dynamin mediates the signaling of phagocytic receptor CED-1 for the engulfment and degradation of apoptotic cells. Dev Cell 10 743 757

43. WangXLiWZhaoDLiuBShiY 2010 Caenorhabditis elegans transthyretin-like protein TTR-52 mediates recognition of apoptotic cells by the CED-1 phagocyte receptor. Nat Cell Biol 12 655 664

44. WangXWuYCFadokVALeeMCGengyo-AndoK 2003 Cell corpse engulfment mediated by C. elegans phosphatidylserine receptor through CED-5 and CED-12. Science 302 1563 1566

45. CabelloJNeukommLJGunesdoganUBurkartKCharetteSJ 2010 The Wnt pathway controls cell death engulfment, spindle orientation, and migration through CED-10/Rac. PLoS Biol 8 e1000297 doi:10.1371/journal.pbio.1000297

46. HsuTYWuYC 2010 Engulfment of apoptotic cells in C. elegans is mediated by integrin alpha/SRC signaling. Curr Biol 20 477 486

47. WuYCHorvitzHR 1998 C. elegans phagocytosis and cell-migration protein CED-5 is similar to human DOCK180. Nature 392 501 504

48. ReddienPWHorvitzHR 2000 CED-2/CrkII and CED-10/Rac control phagocytosis and cell migration in Caenorhabditis elegans. Nat Cell Biol 2 131 136

49. GumiennyTLBrugneraETosello-TrampontACKinchenJMHaneyLB 2001 CED-12/ELMO, a novel member of the CrkII/Dock180/Rac pathway, is required for phagocytosis and cell migration. Cell 107 27 41

50. WuYCTsaiMCChengLCChouCJWengNY 2001 C. elegans CED-12 acts in the conserved CrkII/DOCK180/Rac pathway to control cell migration and cell corpse engulfment. Dev Cell 1 491 502

51. ZhouZCaronEHartwiegEHallAHorvitzHR 2001 The C. elegans PH domain protein CED-12 regulates cytoskeletal reorganization via a Rho/Rac GTPase signaling pathway. Dev Cell 1 477 489

52. BrugneraEHaneyLGrimsleyCLuMWalkSF 2002 Unconventional Rac-GEF activity is mediated through the Dock180-ELMO complex. Nat Cell Biol 4 574 582

53. ZouWLuQZhaoDLiWMapesJ 2009 Caenorhabditis elegans myotubularin MTM-1 negatively regulates the engulfment of apoptotic cells. PLoS Genet 5 e1000679 doi:10.1371/journal.pgen.1000679

54. NeukommLJNicotASKinchenJMAlmendingerJPintoSM 2011 The phosphoinositide phosphatase MTM-1 regulates apoptotic cell corpse clearance through CED-5-CED-12 in C. elegans. Development 138 2003 2014

55. KinchenJMCabelloJKlingeleDWongKFeichtingerR 2005 Two pathways converge at CED-10 to mediate actin rearrangement and corpse removal in C. elegans. Nature 434 93 99

56. NeukommLJFreiAPCabelloJKinchenJMZaidel-BarR 2011 Loss of the RhoGAP SRGP-1 promotes the clearance of dead and injured cells in Caenorhabditis elegans. Nat Cell Biol 13 79 86

57. HurwitzMEVanderzalmPJBloomLGoldmanJGarrigaG 2009 Abl kinase inhibits the engulfment of apoptotic [corrected] cells in Caenorhabditis elegans. PLoS Biol 7 e99 doi:10.1371/journal.pbio.1000099

58. HynesRO 1987 Integrins: a family of cell surface receptors. Cell 48 549 554

59. HynesRO 1992 Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69 11 25

60. WilliamsBDWaterstonRH 1994 Genes critical for muscle development and function in Caenorhabditis elegans identified through lethal mutations. J Cell Biol 124 475 490

61. GettnerSNKenyonCReichardtLF 1995 Characterization of beta pat-3 heterodimers, a family of essential integrin receptors in C. elegans. J Cell Biol 129 1127 1141

62. BaumPDGarrigaG 1997 Neuronal migrations and axon fasciculation are disrupted in ina-1 integrin mutants. Neuron 19 51 62

63. HreskoMCWilliamsBDWaterstonRH 1994 Assembly of body wall muscle and muscle cell attachment structures in Caenorhabditis elegans. J Cell Biol 124 491 506

64. WilliamsBDWaterstonRH 1994 Genes critical for muscle development and function in Caenorhabditis elegans identified through lethal mutations. J Cell Biol 124 4 475 90

65. MoermanDGWilliamsBD Sarcomere assembly in C. elegans muscle (January 16, 2006), WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.81.1, http://www.wormbook.org

66. DixonSJAlexanderMFernandesRRickerNRoyPJ 2006 FGF negatively regulates muscle membrane extension in Caenorhabditis elegans. Development 133 1263 1275

67. MeighanCMSchwarzbauerJE 2007 Control of C. elegans hermaphrodite gonad size and shape by vab-3/Pax6-mediated regulation of integrin receptors. Genes Dev 21 1615 1620

68. EllisHMHorvitzHR 1986 Genetic control of programmed cell death in the nematode C. elegans. Cell 44 817 829

69. KoppenMSimskeJSSimsPAFiresteinBLHallDH 2001 Cooperative regulation of AJM-1 controls junctional integrity in Caenorhabditis elegans epithelia. Nat Cell Biol 3 983 991

70. OkkemaPGHarrisonSWPlungerVAryanaAFireA 1993 Sequence requirements for myosin gene expression and regulation in Caenorhabditis elegans. Genetics 135 385 404

71. MayRCMacheskyLM 2001 Phagocytosis and the actin cytoskeleton. J Cell Sci 114 1061 1077

72. HallANobesCD 2000 Rho GTPases: molecular switches that control the organization and dynamics of the actin cytoskeleton. Philos Trans R Soc Lond B Biol Sci 355 965 970

73. EdwardsKADemskyMMontagueRAWeymouthNKiehartDP 1997 GFP-moesin illuminates actin cytoskeleton dynamics in living tissue and demonstrates cell shape changes during morphogenesis in Drosophila. Dev Biol 191 103 117

74. MotegiFVelardeNVPianoFSugimotoA 2006 Two phases of astral microtubule activity during cytokinesis in C. elegans embryos. Dev Cell 10 509 520

75. HikitaTQadotaHTsuboiDTayaSMoermanDG 2005 Identification of a novel Cdc42 GEF that is localized to the PAT-3-mediated adhesive structure. Biochem Biophys Res Commun 335 139 145

76. LundquistEAReddienPWHartwiegEHorvitzHRBargmannCI 2001 Three C. elegans Rac proteins and several alternative Rac regulators control axon guidance, cell migration and apoptotic cell phagocytosis. Development 128 22 4475 88

77. HanayamaRTanakaMMiyasakaKAozasaKKoikeM 2004 Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice. Science 304 1147 1150

78. FadokVASavillJSHaslettCBrattonDLDohertyDE 1992 Different populations of macrophages use either the vitronectin receptor or the phosphatidylserine receptor to recognize and remove apoptotic cells. J Immunol 149 4029 4035

79. BrennerS 1974 The genetics of Caenorhabditis elegans. Genetics 77 71 94

80. FraserAGKamathRSZipperlenPMartinez-CamposMSohrmannM 2000 Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408 325 330

81. MelloCCKramerJMStinchcombDAmbrosV 1991 Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J 10 3959 3970

82. GuTOritaSHanM 1998 Caenorhabditis elegans SUR-5, a novel but conserved protein, negatively regulates LET-60 Ras activity during vulval induction. Mol Cell Biol 18 4556 4564

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2012 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#