#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Functional Centromeres Determine the Activation Time of Pericentric Origins of DNA Replication in


The centromeric regions of all Saccharomyces cerevisiae chromosomes are found in early replicating domains, a property conserved among centromeres in fungi and some higher eukaryotes. Surprisingly, little is known about the biological significance or the mechanism of early centromere replication; however, the extensive conservation suggests that it is important for chromosome maintenance. Do centromeres ensure their early replication by promoting early activation of nearby origins, or have they migrated over evolutionary time to reside in early replicating regions? In Candida albicans, a neocentromere contains an early firing origin, supporting the first hypothesis but not addressing whether the new origin is intrinsically early firing or whether the centromere influences replication time. Because the activation time of individual origins is not an intrinsic property of S. cerevisiae origins, but is influenced by surrounding sequences, we sought to test the hypothesis that centromeres influence replication time by moving a centromere to a late replication domain. We used a modified Meselson-Stahl density transfer assay to measure the kinetics of replication for regions of chromosome XIV in which either the functional centromere or a point-mutated version had been moved near origins that reside in a late replication region. We show that a functional centromere acts in cis over a distance as great as 19 kb to advance the initiation time of origins. Our results constitute a direct link between establishment of the kinetochore and the replication initiation machinery, and suggest that the proposed higher-order structure of the pericentric chromatin influences replication initiation.


Vyšlo v časopise: Functional Centromeres Determine the Activation Time of Pericentric Origins of DNA Replication in. PLoS Genet 8(5): e32767. doi:10.1371/journal.pgen.1002677
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002677

Souhrn

The centromeric regions of all Saccharomyces cerevisiae chromosomes are found in early replicating domains, a property conserved among centromeres in fungi and some higher eukaryotes. Surprisingly, little is known about the biological significance or the mechanism of early centromere replication; however, the extensive conservation suggests that it is important for chromosome maintenance. Do centromeres ensure their early replication by promoting early activation of nearby origins, or have they migrated over evolutionary time to reside in early replicating regions? In Candida albicans, a neocentromere contains an early firing origin, supporting the first hypothesis but not addressing whether the new origin is intrinsically early firing or whether the centromere influences replication time. Because the activation time of individual origins is not an intrinsic property of S. cerevisiae origins, but is influenced by surrounding sequences, we sought to test the hypothesis that centromeres influence replication time by moving a centromere to a late replication domain. We used a modified Meselson-Stahl density transfer assay to measure the kinetics of replication for regions of chromosome XIV in which either the functional centromere or a point-mutated version had been moved near origins that reside in a late replication region. We show that a functional centromere acts in cis over a distance as great as 19 kb to advance the initiation time of origins. Our results constitute a direct link between establishment of the kinetochore and the replication initiation machinery, and suggest that the proposed higher-order structure of the pericentric chromatin influences replication initiation.


Zdroje

1. HegemannJHFleigUN 1993 The centromere of budding yeast. Bioessays 15 451 460

2. McGrewJDiehlBFitzgerald-HayesM 1986 Single base-pair mutations in centromere element III cause aberrant chromosome segregation in Saccharomyces cerevisiae. Mol Cell Biol 6 530 538

3. JallepalliPVLengauerC 2001 Chromosome segregation and cancer: cutting through the mystery. Nat Rev Cancer 1 109 117

4. McCarrollRMFangmanWL 1988 Time of replication of yeast centromeres and telomeres. Cell 54 505 513

5. YabukiNTerashimaHKitadaK 2002 Mapping of early firing origins on a replication profile of budding yeast. Genes Cells 7 781 789

6. RaghuramanMKWinzelerEACollingwoodDHuntSWodickaL 2001 Replication dynamics of the yeast genome. Science 294 115 121

7. McCuneHJDanielsonLSAlvinoGMCollingwoodDDelrowJJ 2008 The temporal program of chromosome replication: genomewide replication in clb5Δ Saccharomyces cerevisiae. Genetics 180 1833 1847

8. AlvinoGMCollingwoodDMurphyJMDelrowJBrewerBJ 2007 Replication in hydroxyurea: it's a matter of time. Mol Cell Biol 27 6396 6406

9. KimSMDubeyDDHubermanJA 2003 Early-replicating heterochromatin. Genes Dev 17 330 335

10. AhmadKHenikoffS 2001 Centromeres are specialized replication domains in heterochromatin. J Cell Biol 153 101 110

11. KorenATsaiHJTiroshIBurrackLSBarkaiN 2010 Epigenetically-inherited centromere and neocentromere DNA replicates earliest in S-phase. PLoS Genet 6 e1001068 doi:10.1371/journal.pgen.1001068

12. Weidtkamp-PetersSRahnHPCardosoMCHemmerichP 2006 Replication of centromeric heterochromatin in mouse fibroblasts takes place in early, middle, and late S phase. Histochem Cell Biol 125 91 102

13. SchubelerDScalzoDKooperbergCvan SteenselBDelrowJ 2002 Genome-wide DNA replication profile for Drosophila melanogaster: a link between transcription and replication timing. Nat Genet 32 438 442

14. TanakaKMukaeNDewarHvan BreugelMJamesEK 2005 Molecular mechanisms of kinetochore capture by spindle microtubules. Nature 434 987 994

15. FuruyamaSBigginsS 2007 Centromere identity is specified by a single centromeric nucleosome in budding yeast. Proc Natl Acad Sci U S A 104 14706 14711

16. FengWBachantJCollingwoodDRaghuramanMKBrewerBJ 2009 Centromere replication timing determines different forms of genomic instability in Saccharomyces cerevisiae checkpoint mutants during replication stress. Genetics 183 1249 1260

17. HayashiMKatouYItohTTazumiAYamadaY 2007 Genome-wide localization of pre-RC sites and identification of replication origins in fission yeast. EMBO J 26 1327 1339

18. SclafaniRAHolzenTM 2007 Cell cycle regulation of DNA replication. Annu Rev Genet 41 237 280

19. SantaguidaSMusacchioA 2009 The life and miracles of kinetochores. EMBO J 28 2511 2531

20. Fitzgerald-HayesMClarkeLCarbonJ 1982 Nucleotide sequence comparisons and functional analysis of yeast centromere DNAs. Cell 29 235 244

21. ClarkeL 1990 Centromeres of budding and fission yeasts. Trends Genet 6 150 154

22. FriedmanKLDillerJDFergusonBMNylandSVBrewerBJ 1996 Multiple determinants controlling activation of yeast replication origins late in S phase. Genes Dev 10 1595 1607

23. FergusonBMFangmanWL 1992 A position effect on the time of replication origin activation in yeast. Cell 68 333 339

24. FergusonBMBrewerBJReynoldsAEFangmanWL 1991 A yeast origin of replication is activated late in S phase. Cell 65 507 515

25. KolorK 1997 Advancement of the timing of an origin activation by a cis-acting DNA element. PhD Dissertation, University of Washington

26. BrewerBJFangmanWL 1994 Initiation preference at a yeast origin of replication. Proc Natl Acad Sci U S A 91 3418 3422

27. SpellRMHolmC 1994 Nature and distribution of chromosomal intertwinings in Saccharomyces cerevisiae. Mol Cell Biol 14 1465 1476

28. BrewerBJFangmanWL 1987 The localization of replication origins on ARS plasmids in S. cerevisiae. Cell 51 463 471

29. DonaldsonADRaghuramanMKFriedmanKLCrossFRBrewerBJ 1998 CLB5-dependent activation of late replication origins in S. cerevisiae. Mol Cell 2 173 182

30. LechnerJOrtizJ 1996 The Saccharomyces cerevisiae kinetochore. FEBS Lett 389 70 74

31. NieduszynskiCAHiragaSAkPBenhamCJDonaldsonAD 2007 OriDB: a DNA replication origin database. Nucleic Acids Res 35 D40 46

32. Van HoutenJVNewlonCS 1990 Mutational analysis of the consensus sequence of a replication origin from yeast chromosome III. Mol Cell Biol 10 3917 3925

33. KitamuraEBlowJJTanakaTU 2006 Live-cell imaging reveals replication of individual replicons in eukaryotic replication factories. Cell 125 1297 1308

34. DuanZAndronescuMSchutzKMcIlwainSKimYJ 2010 A three-dimensional model of the yeast genome. Nature 465 363 367

35. JinQTrelles-StickenEScherthanHLoidlJ 1998 Yeast nuclei display prominent centromere clustering that is reduced in nondividing cells and in meiotic prophase. J Cell Biol 141 21 29

36. WineyMYararDGiddingsTHJrMastronardeDN 1997 Nuclear pore complex number and distribution throughout the Saccharomyces cerevisiae cell cycle by three-dimensional reconstruction from electron micrographs of nuclear envelopes. Mol Biol Cell 8 2119 2132

37. HeathCVCopelandCSAmbergDCDel PrioreVSnyderM 1995 Nuclear pore complex clustering and nuclear accumulation of poly(A)+ RNA associated with mutation of the Saccharomyces cerevisiae RAT2/NUP120 gene. J Cell Biol 131 1677 1697

38. HeunPLarocheTRaghuramanMKGasserSM 2001 The positioning and dynamics of origins of replication in the budding yeast nucleus. J Cell Biol 152 385 400

39. EbrahimiHRobertsonEDTaddeiAGasserSMDonaldsonAD 2010 Early initiation of a replication origin tethered at the nuclear periphery. J Cell Sci 123 1015 1019

40. HiragaSRobertsonEDDonaldsonAD 2006 The Ctf18 RFC-like complex positions yeast telomeres but does not specify their replication time. EMBO J 25 1505 1514

41. BouckDCJoglekarAPBloomKS 2008 Design features of a mitotic spindle: balancing tension and compression at a single microtubule kinetochore interface in budding yeast. Annu Rev Genet 42 335 359

42. AkiyoshiBSarangapaniKKPowersAFNelsonCRReichowSL 2010 Tension directly stabilizes reconstituted kinetochore-microtubule attachments. Nature 468 576 579

43. FerniusJMarstonAL 2009 Establishment of cohesion at the pericentromere by the Ctf19 kinetochore subcomplex and the replication fork-associated factor, Csm3. PLoS Genet 5 e1000629 doi:10.1371/journal.pgen.1000629

44. RanjitkarPPressMOYiXBakerRMacCossMJ 2010 An E3 ubiquitin ligase prevents ectopic localization of the centromeric histone H3 variant via the centromere targeting domain. Mol Cell 40 455 464

45. PietrasantaLIThrowerDHsiehWRaoSStemmannO 1999 Probing the Saccharomyces cerevisiae centromeric DNA (CEN DNA)-binding factor 3 (CBF3) kinetochore complex by using atomic force microscopy. Proc Natl Acad Sci U S A 96 3757 3762

46. YehEHaaseJPaliulisLVJoglekarABondL 2008 Pericentric chromatin is organized into an intramolecular loop in mitosis. Curr Biol 18 81 90

47. AndersonMHaaseJYehEBloomK 2009 Function and assembly of DNA looping, clustering, and microtubule attachment complexes within a eukaryotic kinetochore. Mol Biol Cell 20 4131 4139

48. MegeePCMistrotCGuacciVKoshlandD 1999 The centromeric sister chromatid cohesion site directs Mcd1p binding to adjacent sequences. Mol Cell 4 445 450

49. TanakaTCosmaMPWirthKNasmythK 1999 Identification of cohesin association sites at centromeres and along chromosome arms. Cell 98 847 858

50. WeberSAGertonJLPolancicJEDeRisiJLKoshlandD 2004 The kinetochore is an enhancer of pericentric cohesin binding. PLoS Biol 2 e260 doi:10.1371/journal.pbio.0030094

51. TanakaYNurekiOKurumizakaHFukaiSKawaguchiS 2001 Crystal structure of the CENP-B protein-DNA complex: the DNA-binding domains of CENP-B induce kinks in the CENP-B box DNA. EMBO J 20 6612 6618

52. LaibleMBoonrodK 2009 Homemade site directed mutagenesis of whole plasmids. J Vis Exp 27 1135

53. SchiestlRHGietzRD 1989 High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet 16 339 346

54. GietzRDSchiestlRHWillemsARWoodsRA 1995 Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11 355 360

55. HubermanJASpotilaLDNawotkaKAel-AssouliSMDavisLR 1987 The in vivo replication origin of the yeast 2 µm plasmid. Cell 51 473 481

56. BrewerBJLockshonDFangmanWL 1992 The arrest of replication forks in the rDNA of yeast occurs independently of transcription. Cell 71 267 276

57. BrewerBJFangmanWL 1991 Mapping replication origins in yeast chromosomes. Bioessays 13 317 322

58. HutterKJEipelHE 1979 Microbial determinations by flow cytometry. J Gen Microbiol 113 369 375

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2012 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#