#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Acquisition Order of Ras and p53 Gene Alterations Defines Distinct Adrenocortical Tumor Phenotypes


Sporadic adrenocortical carcinomas (ACC) are rare endocrine neoplasms with a dismal prognosis. By contrast, benign tumors of the adrenal cortex are common in the general population. Whether benign tumors represent a separate entity or are in fact part of a process of tumor progression ultimately leading to an ACC is still an unresolved issue. To this end, we have developed a mouse model of tumor progression by successively transducing genes altered in adrenocortical tumors into normal adrenocortical cells. The introduction in different orders of the oncogenic allele of Ras (H-RasG12V) and the mutant p53DD that disrupts the p53 pathway yielded tumors displaying major differences in histological features, tumorigenicity, and metastatic behavior. Whereas the successive expression of RasG12V and p53DD led to highly malignant tumors with metastatic behavior, reminiscent of those formed after the simultaneous introduction of p53DD and RasG12V, the reverse sequence gave rise only to benign tumors. Microarray profiling revealed that 157 genes related to cancer development and progression were differentially expressed. Of these genes, 40 were up-regulated and 117 were down-regulated in malignant cell populations as compared with benign cell populations. This is the first evidence-based observation that ACC development follows a multistage progression and that the tumor phenotype is directly influenced by the order of acquisition of genetic alterations.


Vyšlo v časopise: Acquisition Order of Ras and p53 Gene Alterations Defines Distinct Adrenocortical Tumor Phenotypes. PLoS Genet 8(5): e32767. doi:10.1371/journal.pgen.1002700
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002700

Souhrn

Sporadic adrenocortical carcinomas (ACC) are rare endocrine neoplasms with a dismal prognosis. By contrast, benign tumors of the adrenal cortex are common in the general population. Whether benign tumors represent a separate entity or are in fact part of a process of tumor progression ultimately leading to an ACC is still an unresolved issue. To this end, we have developed a mouse model of tumor progression by successively transducing genes altered in adrenocortical tumors into normal adrenocortical cells. The introduction in different orders of the oncogenic allele of Ras (H-RasG12V) and the mutant p53DD that disrupts the p53 pathway yielded tumors displaying major differences in histological features, tumorigenicity, and metastatic behavior. Whereas the successive expression of RasG12V and p53DD led to highly malignant tumors with metastatic behavior, reminiscent of those formed after the simultaneous introduction of p53DD and RasG12V, the reverse sequence gave rise only to benign tumors. Microarray profiling revealed that 157 genes related to cancer development and progression were differentially expressed. Of these genes, 40 were up-regulated and 117 were down-regulated in malignant cell populations as compared with benign cell populations. This is the first evidence-based observation that ACC development follows a multistage progression and that the tumor phenotype is directly influenced by the order of acquisition of genetic alterations.


Zdroje

1. BardeesyNDePinhoRA 2002 Pancreatic cancer biology and genetics. Nat Rev Cancer 2 897 909

2. TroyerDAMubiruJLeachRJNaylorSL 2004 Promise and challenge: Markers of prostate cancer detection, diagnosis and prognosis. Dis Markers 20 117 128

3. HanahanDWeinbergRA 2011 The hallmarks of cancer: the next generation. Cell 144 646 674

4. FearonERVogelsteinB 1990 A genetic model for colorectal tumorigenesis. Cell 61 759 767

5. VogelsteinBKinzlerKW 1993 The multistep nature of cancer. Trends Genet 9 138 141

6. AllolioBFassnachtM 2006 Adrenocortical Carcinoma: Clinical Update. J Clin Endocrinol Metab 91 2027 2037

7. SchteingartDEDohertyGMGaugerPGGiordanoTJHammerGD 2005 Management of patients with adrenal cancer: recommendations of an international consensus conference. Endocr Relat Cancer 12 667 680

8. BarzonLSoninoNFalloFPalùGBoscaroM 2003 Prevalence and natural history of adrenal incidentalomas. Eur J Endocrinol 149 273 285

9. ManteroFTerzoloMArnaldiGOsellaGMasiniAM 2000 A survey on adrenal incidentaloma in Italy. Study Group on Adrenal Tumors of the Italian Society of Endocrinology. J Clin Endocrinol Metab 85 637 644

10. BernardMHSidhuSBergerNPeixJLMarshDJ 2003 A case report in favor of a multistep adrenocortical tumorigenesis. J Clin Endocrinol Metab 88 998 1001

11. GaujouxSTissierFGroussinLLibéRRagazzonB 2008 Wnt/β-catenin and cAMP/PKA signaling pathways alterations and somatic β-catenin gene mutations in the progression of adrenocortical tumors. J Clin Endocrinol Metab 93 4135 4140

12. SoonPSMcDonaldKLRobinsonBGSidhuSB 2008 Molecular markers and the pathogenesis of adrenocortical cancer. The Oncologist 13 548 561

13. YashiroTHaraHFultonNCObaraTKaplanEL 1994 Point mutations of ras genes in human adrenal cortical tumors: absence in adrenocortical hyperplasia. World J Surg 18 455 460

14. ThomasMSuwaTYangLZhaoLHawksCL 2002 Cooperation of hTERT, SV40 T antigen and oncogenic Ras in tumorigenesis: a cell transplantation model using bovine adrenocortical cells. Neoplasia 4 493 500

15. ShaulianEZaubermanAGinsbergDOrenM 1992 Identification of a minimal transforming domain of p53: negative dominance through abrogation of sequence-specific DNA binding. Mol Cell Biol 12 5581 5592

16. ShieldsJMPruittKMcFallAShaubADerCJ 2000 Understanding Ras: ‘it ain't over ‘til it's over’. Trends Cell Biol 10 147 154

17. HahnWCDessainSKBrooksMWKingJEElenbaasB 2002 Enumeration of the simian virus 40 early region elements necessary for human cell transformation. Mol Cell Biol 22 2111 2123

18. HahnWCCounterCMLundbergASBeijersbergenRLBrooksMW 1999 Creation of human tumour cells with defined genetic elements. Nature 400 464 468

19. FagottoFGumbinerBM 1996 Cell contact-dependent signaling. Dev Biol 180 445 454

20. KochCAPacakKChrousosGP 2002 The molecular pathogenesis of hereditary and sporadic adrenocortical and adrenomedullary tumors. J Clin Endocrinol Metab 87 5367 5384

21. GuptaGPMassagueJ 2006 Cancer metastasis: building a framework. Cell 127 679 695

22. AchenMGStackerSA 2006 Tumor lymphangiogenesis and metastatic spread-new players begin to emerge. Int J Cancer 119 1755 1760

23. PrevoRBanerjiSFergusonDJClasperSJacksonDG 2001 Mouse LYVE-1 is an endocytic receptor for hyaluronan in lymphatic endothelium. J Biol Chem 276 19420 19430

24. SunBHuangQLiuSChenMHawksCL 2004 Progressive loss of malignant behavior in telomerase-negative tumorigenic adrenocortical cells and restoration of tumorigenicity by human telomerase reverse transcriptase. Cancer Res 64 6144 6151

25. BernardsRWeinbergRA 2002 A progression puzzle. Nature 418 823

26. AliSHDeCaprioJA 2001 Cellular transformation by SV40 large T antigen: interaction with host proteins. Semin Cancer Biol 11 15 23

27. GazdarAFButelJSCarboneM 2002 SV40 and human tumours: myth, association or causality? Nat Rev Cancer 2 957 964

28. BoehmJSHessionMTBulmerSEHahnWC 2005 Transformation of human and murine fibroblasts without viral oncoproteins. Mol Cell Biol 25 6464 6474

29. KamioTShigematsuKSouHKawaiKTsuchiyamaH 1990 Immunohistochemical expression of epidermal growth factor receptors in human adrenocortical carcinoma. Hum Pathol 21 277 282

30. SasanoHSuzukiTShizawaSKatoKNaguraH 1994 Transforming growth factor alpha, epidermal growth factor, and epidermal growth factor receptor expression in normal and diseased human adrenal cortex by immunohistochemistry and in situ hybridization. Mod Pathol 7 741 746

31. AdamPHahnerSHartmannMHeinrichBQuinklerM 2010 Epidermal growth factor receptor in adrenocortical tumors: analysis of gene sequence, protein expression and correlation with clinical outcome. Mod Pathol 23 1596 1604

32. SidhuSMartinEGicquelCMelkiJClarkSJ 2005 Mutation and methylation analysis of TP53 in adrenal carcinogenesis. Eur J Surg Oncol 31 549 554

33. LibéRGroussinLTissierFElieCRene-CorailF 2007 Somatic TP53 mutations are relatively rare among adrenocortical cancers with the frequent 17p13 loss of heterozygosity. Clin Cancer Res 13 844 850

34. RagazzonBLibéRGaujouxSAssiéGFraticciA 2010 Transcriptome analysis reveals that p53 and β–catenin alterations occur in a group of aggressive adrenocortical cancers. Cancer Res 70 8276 8281

35. DraytonSRoweJJonesRVatchevaRCuthbert-HeavensD 2003 Tumor suppressor p16INK4a determines sensitivity of human cells to transformation by cooperating cellular oncogenes. Cancer Cell 4 301 310

36. GoesselGQuanteMHahnWCHaradaHHeegS 2005 Creating oral squamous cancer cells: a cellular model of oral-esophageal carcinogenesis. Proc Natl Acad Sci USA 102 15599 15604

37. KendallSDLinardicCMAdamSJCounterCM 2005 A network of genetic events sufficient to convert normal human cells to a tumorigenic state. Cancer Res 65 9824 9828

38. AdamSJRundLAKuzmukKNZacharyJFSchookLB 2007 Genetic induction of tumorigenesis in swine. Oncogene 26 1038 1045

39. ThomasMNorthrupSRHornsbyPJ 1997 Adrenocortical tissue formed by transplantation of normal clones of bovine adrenocortical cells in SCID mice replaces the essential functions of the animals' adrenal glands. Nat Med 3 978 983

40. MazzucoTLChabreOFeigeJJThomasM 2006 Aberrant expression of human luteinizing hormone receptor by adrenocortical cells is sufficient to provoke both hyperplasia and Cushing's syndrome features. J Clin Endocrinol Metab 91 196 203

41. MazzucoTLChabreOSturmNFeigeJJThomasM 2006 Ectopic expression of the gastric inhibitory polypeptide receptor gene is a sufficient genetic event to induce benign adrenocortical tumor in a xenotransplantation model. Endocrinology 147 782 790

42. SerranoMLinAWMcCurrachMEBeachDLoweSW 1997 Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88 593 602

43. HingoraniSRWangLMultaniASCombsCDeramaudtTB 2005 Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7 469 483

44. TsumuraHYoshidaTSaitoHImanaka-YoshidaKSuzukiN 2006 Cooperation of oncogenic K-ras and p53 deficiency in pleomorphic rhabdomyosarcoma development in adult mice. Oncogene 25 7673 7679

45. ZhengSEl-NaggarAKKim ES KurieJMLozanoG 2007 A genetic mouse model for metastatic lung cancer with gender differences in survival. Oncogene 26 6896 6904

46. BoikoADPorteousSRazorenovaOVKrivokrysenkoVIWilliamsBR 2006 A systematic search for downstream mediators of tumor suppressor function of p53 reveals a major role of BTG2 in suppression of Ras-induced transformation. Genes Dev 20 236 252

47. LuDWolfgangCDHaiT 2006 Activating transcription factor 3, a stress-inducible gene, suppresses Ras-stimulated tumorigenesis. J Biol Chem 281 10473 10481

48. XiaMLandH 2007 Tumor suppressor p53 restricts Ras stimulation of RhoA and cancer motility. Nature Struct Mol Biol 14 215 223

49. BuganimYSolomonHRaisYKistnerDNachmanyI 2010 p53 regulates the ras circuit to inhibit the expression of a cancer-related gene signature by various molecular pathways. Cancer Res 70 2274 2283

50. MilyavskyMTabachYShatsIErezNCohenY 2005 Transcriptional programs following genetic alterations in p53, INK4A, and H-Ras genes along defined stages of malignant transformation. Cancer Res 65 4530 4543

51. NagarajuGPCSharmaD 2011 Anti-cancer role of SPARC, an inhibitor of adipogenesis. Cancer Treat Rev 37 559 566

52. HedmanHHenrikssonR 2007 LRIG inhibitors of growth factor signaling-double-edged swords in human cancer? Eur J Cancer 43 676 682

53. LapointeJLiCHigginsJPvan de RjinMBairE 2004 Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci USA 101 811 816

54. RubinMAVarambellySBeroukhimRTomlinsSARhodesDR 2004 Overexpression, amplification, and androgen regulation of TPD52 in prostate cancer. Cancer Res 64 3814 3822

55. ByrneJABalleineRLSchoenbergFMMerciecaJChiewYE 2005 Tumor protein D52 (TPD52) is overexpressed and a gene amplification target in ovarian cancer. Int J Cancer 117 1049 1054

56. AdélaïdeJFinettiPBekhoucheIRepelliniLGeneixJ 2007 Integrated profiling of basal and luminal breast cancers. Cancer Res 67 11565 11575

57. WangRXuJMabjeeshNZhuGZhouJ 2007 PrLZ is expressed in normal prostate development and in human prostate cancer progression. Clin Cancer Res 13 6040 6048

58. KimJKDiehlJA 2009 Nuclear cyclin D1: an oncogenic driver in human cancer. J Cell Physiol 220 292 296

59. YiYMikhaylovaOMamadovaAPastolaPBiesiadaJ 2010 von Hippel-Lindau-dependent patterns of RNA polymerase II hydroxylation in human renal clear cell carcinoma. Clin Cancer Res 16 5142 5152

60. ZhangQGuJLiLLiuJLuoB 2009 Control of Cyclin D1 and breast tumorigenesis by the EglN2 prolyl hydroxylase. Cancer Cell 16 413 424

61. MoralesCPHoltSEOuelletteMKaurKJYanY 1999 Absence of cancer-associated changes in human fibroblasts immortalized with telomerase. Nat Genet 21 115 118

62. DuperrayAChambazEM 1980 Effect of prostaglandin E1 and ACTH on proliferation and steroidogenic activity of bovine adrenocortical cells in primary culture. J Steroid Biochem 13 1359 1364

63. ThomasMHornsbyPJ 1999 Transplantation of primary bovine adrenocortical cells into scid mice. Mol Cell Endocrinol 153 125 136

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2012 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Eozinofilní granulomatóza s polyangiitidou
nový kurz
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#