#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Selection and Spread of Artemisinin-Resistant Alleles in Thailand Prior to the Global Artemisinin Resistance Containment Campaign


The Plasmodium falciparum parasites that cause malaria are evolving resistance to our most effective and potent anti-malarial drugs available, called artemisinins. Currently, artemisinin resistance is emerging in a number of countries in the Greater Mekong Subregion, including Cambodia, Thailand, Myanmar, and Vietnam. Historically, the Thai-Cambodia border region has been an epicenter of resistance to several anti-malarial drugs. To prevent the spread of artemisinin resistant parasites from the Greater Mekong Subregion, a global artemisinin resistance project was initiated in 2009. Here, we show that artemisinin resistance associated mutation in the K13 gene were widely present throughout Thailand, as early as 2007, primarily along the Thai-Cambodia and Thai-Myanmar border regions. Additional data based on microsatellite markers suggests that the most commonly found K13 C580Y allele may have two recent independent origins in Thailand, on the borders of Cambodia and Myanmar.


Vyšlo v časopise: Selection and Spread of Artemisinin-Resistant Alleles in Thailand Prior to the Global Artemisinin Resistance Containment Campaign. PLoS Pathog 11(4): e32767. doi:10.1371/journal.ppat.1004789
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004789

Souhrn

The Plasmodium falciparum parasites that cause malaria are evolving resistance to our most effective and potent anti-malarial drugs available, called artemisinins. Currently, artemisinin resistance is emerging in a number of countries in the Greater Mekong Subregion, including Cambodia, Thailand, Myanmar, and Vietnam. Historically, the Thai-Cambodia border region has been an epicenter of resistance to several anti-malarial drugs. To prevent the spread of artemisinin resistant parasites from the Greater Mekong Subregion, a global artemisinin resistance project was initiated in 2009. Here, we show that artemisinin resistance associated mutation in the K13 gene were widely present throughout Thailand, as early as 2007, primarily along the Thai-Cambodia and Thai-Myanmar border regions. Additional data based on microsatellite markers suggests that the most commonly found K13 C580Y allele may have two recent independent origins in Thailand, on the borders of Cambodia and Myanmar.


Zdroje

1. Noedl H., et al., Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med, 2008. 359(24): p. 2619–20. doi: 10.1056/NEJMc0805011 19064625

2. Vijaykadga S., et al., In vivo sensitivity monitoring of mefloquine monotherapy and artesunate-mefloquine combinations for the treatment of uncomplicated falciparum malaria in Thailand in 2003. Trop Med Int Health, 2006. 11(2): p. 211–9. 16451346

3. Wongsrichanalai C., et al., Epidemiology of drug-resistant malaria. Lancet Infect Dis, 2002. 2(4): p. 209–18. 11937421

4. Wootton J.C., et al., Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum. Nature, 2002. 418(6895): p. 320–3. 12124623

5. Satimai W., et al., Artemisinin resistance containment project in Thailand. II: Responses to mefloquine-artesunate combination therapy among falciparum malaria patients in provinces bordering Cambodia. Malar J, 2012. 11: p. 300. 22929621

6. Alker A.P., et al., Pfmdr1 and in vivo resistance to artesunate-mefloquine in falciparum malaria on the Cambodian-Thai border. Am J Trop Med Hyg, 2007. 76(4): p. 641–7. 17426163

7. Phyo A.P., et al., Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. Lancet, 2012. 379(9830): p. 1960–6. doi: 10.1016/S0140-6736(12)60484-X 22484134

8. Dondorp A.M., et al., Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med, 2009. 361(5): p. 455–67. doi: 10.1056/NEJMoa0808859 19641202

9. Amaratunga C., et al., Artemisinin-resistant Plasmodium falciparum in Pursat province, western Cambodia: a parasite clearance rate study. Lancet Infect Dis, 2012. 12(11): p. 851–8. doi: 10.1016/S1473-3099(12)70181-0 22940027

10. Carrara V.I., et al., Malaria burden and artemisinin resistance in the mobile and migrant population on the Thai-Myanmar border, 1999–2011: an observational study. PLoS Med, 2013. 10(3): p. e1001398. doi: 10.1371/journal.pmed.1001398 23472056

11. Kyaw M.P., et al., Reduced susceptibility of Plasmodium falciparum to artesunate in southern Myanmar. PLoS One, 2013. 8(3): p. e57689. doi: 10.1371/journal.pone.0057689 23520478

12. Takala-Harrison S., et al., Genetic loci associated with delayed clearance of Plasmodium falciparum following artemisinin treatment in Southeast Asia. Proc Natl Acad Sci U S A, 2013. 110(1): p. 240–5. doi: 10.1073/pnas.1211205110 23248304

13. Takala-Harrison S., et al., Independent Emergence of Artemisinin Resistance Mutations Among Plasmodium falciparum in Southeast Asia. J Infect Dis, 2014. 211(5):670–9. doi: 10.1093/infdis/jiu491 25180241

14. WHO, Strategic Plan to Strengthen Malaria Control and Elimination in the Greater Mekong Sub region: 2010–2014. 2010: The World Health Organizaiton. Geneva.

15. Khamsiriwatchara A., et al., Artemisinin resistance containment project in Thailand. (I): Implementation of electronic-based malaria information system for early case detection and individual case management in provinces along the Thai-Cambodian border. Malar J, 2012. 11: p. 247. doi: 10.1186/1475-2875-11-247 22839508

16. WHO, Methods and techniques for clinical trials on antimalarial drug efficacy: genotyping to identify parasite populations. 2008: World Health Organization. Geneva.

17. WHO, Global report on antimalarial drug efficacy and drug resistance: 2000–2010. 2010: World Health Organization. Geneva.

18. Cheeseman I.H., et al., A major genome region underlying artemisinin resistance in malaria. Science, 2012. 336(6077): p. 79–82. doi: 10.1126/science.1215966 22491853

19. Ariey F., et al., A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature, 2014. 505(7481): p. 50–5. doi: 10.1038/nature12876 24352242

20. Ashley E.A., et al., Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med, 2014. 371(5): p. 411–23. doi: 10.1056/NEJMoa1314981 25075834

21. Miotto O., et al., Genetic architecture of artemisinin-resistant Plasmodium falciparum. Nat Genet, 2015. 47(3):226–34 doi: 10.1038/ng.3189 25599401

22. Miotto O., et al., Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia. Nat Genet, 2013. 45(6): p. 648–55. doi: 10.1038/ng.2624 23624527

23. Nyunt, M.H., et al., Molecular Assessment of Artemisinin Resistance Markers, Polymorphisms in the K13 Propeller, and a Multidrug-Resistance Gene in the Eastern and Western Border Areas of Myanmar. Clin Infect Dis, 2014. pii: ciu1160. [Epub ahead of print]

24. Tun, K.M., et al., Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: a cross-sectional survey of the K13 molecular marker. Lancet Infect Dis, 2015. pii: S1473-3099(15)70032-0.

25. Straimer J., et al., Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science, 2015. 347(6220): p. 428–31. doi: 10.1126/science.1260867 25502314

26. Pumpaibool T., et al., Genetic diversity and population structure of Plasmodium falciparum in Thailand, a low transmission country. Malar J, 2009. 8: p. 155. doi: 10.1186/1475-2875-8-155 19602241

27. Anderson T.J. and Roper C., The origins and spread of antimalarial drug resistance: lessons for policy makers. Acta Trop, 2005. 94(3): p. 269–80. 15878153

28. Alam M.T., et al., Tracking origins and spread of sulfadoxine-resistant Plasmodium falciparum dhps alleles in Thailand. Antimicrob Agents Chemother, 2011. 55(1): p. 155–64. doi: 10.1128/AAC.00691-10 20956597

29. WHO, Malaria in the greater Mekong subregion: regional and country profiles. 2008: The World Health Organization. Geneva.

30. Alam M.T., et al., Selective sweeps and genetic lineages of Plasmodium falciparum drug-resistant alleles in Ghana. J Infect Dis, 2011. 203(2): p. 220–7. doi: 10.1093/infdis/jiq038 21288822

31. Su X., et al., A genetic map and recombination parameters of the human malaria parasite Plasmodium falciparum. Science, 1999. 286(5443): p. 1351–3. 10558988

32. Clark L.V. and Jasieniuk M., POLYSAT: an R package for polyploid microsatellite analysis. Mol Ecol Resour, 2011. 11(3): p. 562–6. doi: 10.1111/j.1755-0998.2011.02985.x 21481215

33. Boc A., Diallo A.B., and Makarenkov V., T-REX: a web server for inferring, validating and visualizing phylogenetic trees and networks. Nucleic Acids Res, 2012. 40(Web Server issue): p. W573–9. doi: 10.1093/nar/gks485 22675075

34. Hay S.I., et al., Developing global maps of the dominant anopheles vectors of human malaria. PLoS Med, 2010. 7(2): p. e1000209. doi: 10.1371/journal.pmed.1000209 20161718

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2015 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#