#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

An Effector Peptide Family Required for Toll-Mediated Immunity


Dedicated defense systems in the bodies of humans and other animals protect against dangerous microbes, such as bacteria and fungi. We study these processes in the fruit fly Drosophila, which can be readily grown and manipulated in the laboratory. In this animal, as in humans, protective activities are triggered when fragments of bacteria or fungi activate a system for defense gene regulation known as the Toll signaling pathway. The result is the large-scale production of defense molecules and, in many cases, clearance of the infection and survival of the animal. Although the systems for recognizing and initiating responses are well described, the role of many defense molecules is not understood. We have identified a group of closely related defense molecules in flies and used state-of-the-art genomic engineering to simultaneously eliminate most of the genes in the group. By comparing the effect of fungal or bacterial infection on the genetically altered flies and normal siblings, we find that this group of defense molecules is essential for disease resistance.


Vyšlo v časopise: An Effector Peptide Family Required for Toll-Mediated Immunity. PLoS Pathog 11(4): e32767. doi:10.1371/journal.ppat.1004876
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004876

Souhrn

Dedicated defense systems in the bodies of humans and other animals protect against dangerous microbes, such as bacteria and fungi. We study these processes in the fruit fly Drosophila, which can be readily grown and manipulated in the laboratory. In this animal, as in humans, protective activities are triggered when fragments of bacteria or fungi activate a system for defense gene regulation known as the Toll signaling pathway. The result is the large-scale production of defense molecules and, in many cases, clearance of the infection and survival of the animal. Although the systems for recognizing and initiating responses are well described, the role of many defense molecules is not understood. We have identified a group of closely related defense molecules in flies and used state-of-the-art genomic engineering to simultaneously eliminate most of the genes in the group. By comparing the effect of fungal or bacterial infection on the genetically altered flies and normal siblings, we find that this group of defense molecules is essential for disease resistance.


Zdroje

1. Medzhitov R, Janeway C Jr. Innate immune recognition: mechanisms and pathways. Immunol Rev. 2000;173(44):89–97.

2. Akira S. TLR signaling. Curr Top Microbiol Immunol. 2006;311:1–16. 17048703

3. Leulier F, Lemaitre B. Toll-like receptors—taking an evolutionary approach. Nature reviews Genetics. 2008 Mar;9(3):165–78. doi: 10.1038/nrg2303 18227810

4. Hoffmann JA, Reichhart JM. Drosophila innate immunity: an evolutionary perspective. Nat Immunol. 2002;3(2):121–6. 11812988

5. Wasserman SA. A conserved signal transduction pathway regulating the activity of the rel-like proteins dorsal and NF-κB. Mol Biol Cell. 1993;4(8):767–71. 8241564

6. Lemaitre B, Emmanuelle N, Michaut L, Reichhart J- M, Hoffmann JA. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell. 1996;86:973–83. 8808632

7. Rutschmann S, Kilinc A, Ferrandon D. Cutting edge: the toll pathway is required for resistance to gram-positive bacterial infections in Drosophila. J Immunol. 2002 Feb 15;168(4):1542–6. 11823479

8. Lemaitre B, Kromer-Metzger E, Michaut L, Nicolas E, Meister M, Georgel P, et al. A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defense. Proc Natl Acad Sci USA. 1995;92(21):9465–9. 7568155

9. Georgel P, Naitza S, Kappler C, Ferrandon D, Zachary D, Swimmer C, et al. Drosophila immune deficiency (IMD) is a death domain protein that activates antibacterial defense and can promote apoptosis. Dev Cell. 2001 Oct;1(4):503–14. 11703941

10. Ganesan S, Aggarwal K, Paquette N, Silverman N. NF-kappaB/Rel proteins and the humoral immune responses of Drosophila melanogaster. Curr Top Microbiol Immunol. 2011;349:25–60. doi: 10.1007/82_2010_107 20852987

11. Valanne S, Wang JH, Ramet M. The Drosophila Toll signaling pathway. J Immunol. 2011 Jan 15;186(2):649–56. doi: 10.4049/jimmunol.1002302 21209287

12. Michel T, Reichhart JM, Hoffmann JA, Royet J. Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature. 2001 Dec 13;414(6865):756–9. 11742401

13. Bischoff V, Vignal C, Boneca IG, Michel T, Hoffmann JA, Royet J. Function of the drosophila pattern-recognition receptor PGRP-SD in the detection of Gram-positive bacteria. Nat Immunol. 2004 Nov;5(11):1175–80. 15448690

14. Gobert V, Gottar M, Matskevich AA, Rutschmann S, Royet J, Belvin M, et al. Dual activation of the Drosophila toll pathway by two pattern recognition receptors. Science. 2003 Dec 19;302(5653):2126–30. 14684822

15. Buchon N, Poidevin M, Kwon HM, Guillou A, Sottas V, Lee BL, et al. A single modular serine protease integrates signals from pattern-recognition receptors upstream of the Drosophila Toll pathway. Proc Natl Acad Sci U S A. 2009 Jul 28;106(30):12442–7. doi: 10.1073/pnas.0901924106 19590012

16. Lindsay SA, Wasserman SA. Conventional and non-conventional Drosophila Toll signaling Dev Comp Immunol. 2013 Jan;42(1):16–24. doi: 10.1016/j.dci.2013.04.011 23632253

17. Choe KM, Werner T, Stoven S, Hultmark D, Anderson KV. Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila. Science. 2002 Apr 12;296(5566):359–62. 11872802

18. Kaneko T, Silverman N. Bacterial recognition and signalling by the Drosophila IMD pathway. Cell Microbiol. 2005 Apr;7(4):461–9. 15760446

19. Kaneko T, Yano T, Aggarwal K, Lim JH, Ueda K, Oshima Y, et al. PGRP-LC and PGRP-LE have essential yet distinct functions in the drosophila immune response to monomeric DAP-type peptidoglycan. Nat Immunol. 2006 Jul;7(7):715–23. 16767093

20. Gottar M, Gobert V, Michel T, Belvin M, Duyk G, Hoffmann JA, et al. The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature. 2002 Apr 11;416(6881):640–4. 11912488

21. Ramet M, Manfruelli P, Pearson A, Mathey-Prevot B, Ezekowitz RA. Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature. 2002 Apr 11;416(6881):644–8. 11912489

22. De Gregorio E, Spellman PT, Rubin GM, Lemaitre B. Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12590–5. 11606746

23. Uttenweiler-Joseph S, Moniatte M, Lagueux M, Van Dorsselaer A, Hoffmann JA, Bulet P. Differential display of peptides induced during the immune response of Drosophila: a matrix-assisted laser desorption ionization time-of-flight mass spectrometry study. Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11342–7. 9736738

24. De Gregorio E, Spellman PT, Tzou P, Rubin GM, Lemaitre B. The Toll and Imd pathways are the major regulators of the immune response in Drosophila. Embo J. 2002 Jun 3;21(11):2568–79. 12032070

25. Levy F, Rabel D, Charlet M, Bulet P, Hoffmann JA, Ehret-Sabatier L. Peptidomic and proteomic analyses of the systemic immune response of Drosophila. Biochimie. 2004 Sep-Oct;86(9–10):607–16. 15589689

26. Irving P, Troxler L, Heuer TS, Belvin M, Kopczynski C, Reichhart JM, et al. A genome-wide analysis of immune responses in Drosophila. Proc Natl Acad Sci U S A. 2001 Dec 18;98(26):15119–24. 11742098

27. Boutros M, Agaisse H, Perrimon N. Sequential activation of signaling pathways during innate immune responses in Drosophila. Dev Cell. 2002 Nov;3(5):711–22. 12431377

28. Boman HG, Nilsson I, Rasmuson B. Inducible antibacterial defence system in Drosophila. Nature. 1972 May 26;237(5352):232–5. 4625204

29. Steiner H, Hultmark D, Engstrom A, Bennich H, Boman HG. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature. 1981 Jul 16;292(5820):246–8. 7019715

30. Lee JY, Boman A, Sun CX, Andersson M, Jornvall H, Mutt V, et al. Antibacterial peptides from pig intestine: isolation of a mammalian cecropin. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9159–62. 2512577

31. Strominger JL. Animal antimicrobial peptides: ancient players in innate immunity. J Immunol. 2009 Jun 1;182(11):6633–4. doi: 10.4049/jimmunol.0990038 19454654

32. Fehlbaum P, Bulet P, Michaut L, Lagueux M, Broekaert WF, Hetru C, et al. Insect immunity. Septic injury of Drosophila induces the synthesis of a potent antifungal peptide with sequence homology to plant antifungal peptides. J Biol Chem. 1994 Dec 30;269(52):33159–63. 7806546

33. Tauszig-Delamasure S, Bilak H, Capovilla M, Hoffmann JA, Imler JL. Drosophila MyD88 is required for the response to fungal and Gram- positive bacterial infections. Nat Immunol. 2002;3(1):91–7. 11743586

34. Quintin J, Asmar J, Matskevich AA, Lafarge MC, Ferrandon D. The Drosophila Toll pathway controls but does not clear Candida glabrata infections. J Immunol. 2013 Mar 15;190(6):2818–27. doi: 10.4049/jimmunol.1201861 23401590

35. Ayres JS, Schneider DS. Tolerance of infections. Annu Rev Immunol. 2012;30:271–94. doi: 10.1146/annurev-immunol-020711-075030 22224770

36. Venken KJ, Schulze KL, Haelterman NA, Pan H, He Y, Evans-Holm M, et al. MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes. Nat methods. 2011 Sep;8(9):737–43. 21985007

37. Hamilton C, Bulmer MS. Molecular antifungal defenses in subterranean termites: RNA interference reveals in vivo roles of termicins and GNBPs against a naturally encountered pathogen. Dev Comp Immunol. 2012 Feb;36(2):372–7. doi: 10.1016/j.dci.2011.07.008 21824492

38. Moule MG, Monack DM, Schneider DS. Reciprocal analysis of Francisella novicida infections of a Drosophila melanogaster model reveal host-pathogen conflicts mediated by reactive oxygen and imd-regulated innate immune response. PLoS Pathog. 2010;6(8):e1001065. doi: 10.1371/journal.ppat.1001065 20865166

39. Blandin S, Moita LF, Kocher T, Wilm M, Kafatos FC, Levashina EA. Reverse genetics in the mosquito Anopheles gambiae: targeted disruption of the Defensin gene. EMBO Rep. 2002 Sep;3(9):852–6. 12189180

40. Nizet V, Ohtake T, Lauth X, Trowbridge J, Rudisill J, Dorschner RA, et al. Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature. 2001 Nov 22;414(6862):454–7. 11719807

41. Nehme NT, Quintin J, Cho JH, Lee J, Lafarge MC, Kocks C, et al. Relative roles of the cellular and humoral responses in the Drosophila host defense against three gram-positive bacterial infections. PLoS One. 2011;6(3):e14743. doi: 10.1371/journal.pone.0014743 21390224

42. Binggeli O, Neyen C, Poidevin M, Lemaitre B. Prophenoloxidase activation is required for survival to microbial infections in Drosophila. PLoS Pathog. 2014 May;10(5):e1004067. doi: 10.1371/journal.ppat.1004067 24788090

43. Defaye A, Evans I, Crozatier M, Wood W, Lemaitre B, Leulier F. Genetic ablation of Drosophila phagocytes reveals their contribution to both development and resistance to bacterial infection. J Innate Immun. 2009;1(4):322–34. doi: 10.1159/000210264 20375589

44. Haine ER, Moret Y, Siva-Jothy MT, Rolff J. Antimicrobial defense and persistent infection in insects. Science. 2008 Nov 21;322(5905):1257–9. doi: 10.1126/science.1165265 19023083

45. Ulvila J, Vanha-aho LM, Kleino A, Vaha-Makila M, Vuoksio M, Eskelinen S, et al. Cofilin regulator 14-3-3zeta is an evolutionarily conserved protein required for phagocytosis and microbial resistance. J Leukoc Biol. 2011 May;89(5):649–59. doi: 10.1189/jlb.0410195 21208897

46. Charroux B, Royet J. Elimination of plasmatocytes by targeted apoptosis reveals their role in multiple aspects of the Drosophila immune response. Proc Natl Acad Sci U S A. 2009 Jun 16;106(24):9797–802. doi: 10.1073/pnas.0903971106 19482944

47. Bulet P, Dimarcq JL, Hetru C, Lagueux M, Charlet M, Hegy G, et al. A novel inducible antibacterial peptide of Drosophila carries an O-glycosylated substitution. J Biol Chem. 1993 Jul 15;268(20):14893–7. 8325867

48. Sackton TB, Lazzaro BP, Schlenke TA, Evans JD, Hultmark D, Clark AG. Dynamic evolution of the innate immune system in Drosophila. Nat Genet. 2007 Dec;39(12):1461–8. 17987029

49. Thomas JH. Analysis of homologous gene clusters in Caenorhabditis elegans reveals striking regional cluster domains. Genetics. 2006 Jan;172(1):127–43. 16291650

50. Kurata S. Peptidoglycan recognition proteins in Drosophila immunity. Dev Comp Immunol. 2014 Jan;42(1):36–41. doi: 10.1016/j.dci.2013.06.006 23796791

51. Yang WY, Wen SY, Huang YD, Ye MQ, Deng XJ, Han D, et al. Functional divergence of six isoforms of antifungal peptide Drosomycin in Drosophila melanogaster. Gene. 2006 Sep 1;379:26–32. 16824706

52. Tian C, Gao B, Rodriguez Mdel C, Lanz-Mendoza H, Ma B, Zhu S. Gene expression, antiparasitic activity, and functional evolution of the drosomycin family. Mol Immunol. 2008 Sep;45(15):3909–16. doi: 10.1016/j.molimm.2008.06.025 18657321

53. Deng XJ, Yang WY, Huang YD, Cao Y, Wen SY, Xia QY, et al. Gene expression divergence and evolutionary analysis of the drosomycin gene family in Drosophila melanogaster. J Biomed Biotechnol. 2009;2009:315423. doi: 10.1155/2009/315423 19888430

54. Tzou P, Reichhart JM, Lemaitre B. Constitutive expression of a single antimicrobial peptide can restore wild-type resistance to infection in immunodeficient Drosophila mutants. Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):2152–7. 11854512

55. Graveley BR, Brooks AN, Carlson JW, Duff MO, Landolin JM, Yang L, et al. The developmental transcriptome of Drosophila melanogaster. Nature. 2011 Mar 24;471(7339):473–9. doi: 10.1038/nature09715 21179090

56. Chen S, Zhang YE, Long M. New genes in Drosophila quickly become essential. Science. 2010 Dec 17;330(6011):1682–5. doi: 10.1126/science.1196380 21164016

57. Buchon N, Silverman N, Cherry S. Immunity in Drosophila melanogaster—from microbial recognition to whole-organism physiology. Nat Rev Immunol. 2014 Nov 25;14(12):796–810. doi: 10.1038/nri3763 25421701

58. Dionne M. Immune-metabolic interaction in Drosophila. Fly. 2014 Apr-May;8(2):75–9. doi: 10.4161/fly.28113 25483252

59. Liu J, Li C, Yu Z, Huang P, Wu H, Wei C, et al. Efficient and specific modifications of the Drosophila genome by means of an easy TALEN strategy. J Genet Genomics. 2012 May 20;39(5):209–15. doi: 10.1016/j.jgg.2012.04.003 22624882

60. Metaxakis A, Oehler S, Klinakis A, Savakis C. Minos as a genetic and genomic tool in Drosophila melanogaster. Genetics. 2005 Oct;171(2):571–81. 15972463

61. Neyen C, Bretscher AJ, Binggeli O, Lemaitre B. Methods to study Drosophila immunity. Methods. 2014 Jun 15;68(1):116–28. doi: 10.1016/j.ymeth.2014.02.023 24631888

62. Kuo TH, Handa A, Williams JA. Quantitative measurement of the immune response and sleep in Drosophila. J Vis Exp. 2012 (70):e4355. doi: 10.3791/4355 23242373

63. Kacsoh BZ, Schlenke TA. High hemocyte load is associated with increased resistance against parasitoids in Drosophila suzukii, a relative of D. melanogaster. PLoS One. 2012;7(4):e34721. doi: 10.1371/journal.pone.0034721 22529929

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2015 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#