-
Články
- Časopisy
- Kurzy
- Témy
- Kongresy
- Videa
- Podcasty
The Master Regulator of the Cellular Stress Response (HSF1) Is Critical for Orthopoxvirus Infection
The genus Orthopoxviridae contains a diverse group of human pathogens including monkeypox, smallpox and vaccinia. These viruses are presumed to be less dependent on host functions than other DNA viruses because they have large genomes and replicate in the cytoplasm, but a detailed understanding of the host factors required by orthopoxviruses is lacking. To address this topic, we performed an unbiased, genome-wide pooled RNAi screen targeting over 17,000 human genes to identify the host factors that support orthopoxvirus infection. We used secondary and tertiary assays to validate our screen results. One of the strongest hits was heat shock factor 1 (HSF1), the ancient master regulator of the cytoprotective heat-shock response. In investigating the behavior of HSF1 during vaccinia infection, we found that HSF1 was phosphorylated, translocated to the nucleus, and increased transcription of HSF1 target genes. Activation of HSF1 was supportive for virus replication, as RNAi knockdown and HSF1 small molecule inhibition prevented orthopoxvirus infection. Consistent with its role as a transcriptional activator, inhibition of several HSF1 targets also blocked vaccinia virus replication. These data show that orthopoxviruses co-opt host transcriptional responses for their own benefit, thereby effectively extending their functional genome to include genes residing within the host DNA. The dependence on HSF1 and its chaperone network offers multiple opportunities for antiviral drug development.
Vyšlo v časopise: The Master Regulator of the Cellular Stress Response (HSF1) Is Critical for Orthopoxvirus Infection. PLoS Pathog 10(2): e32767. doi:10.1371/journal.ppat.1003904
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1003904Souhrn
The genus Orthopoxviridae contains a diverse group of human pathogens including monkeypox, smallpox and vaccinia. These viruses are presumed to be less dependent on host functions than other DNA viruses because they have large genomes and replicate in the cytoplasm, but a detailed understanding of the host factors required by orthopoxviruses is lacking. To address this topic, we performed an unbiased, genome-wide pooled RNAi screen targeting over 17,000 human genes to identify the host factors that support orthopoxvirus infection. We used secondary and tertiary assays to validate our screen results. One of the strongest hits was heat shock factor 1 (HSF1), the ancient master regulator of the cytoprotective heat-shock response. In investigating the behavior of HSF1 during vaccinia infection, we found that HSF1 was phosphorylated, translocated to the nucleus, and increased transcription of HSF1 target genes. Activation of HSF1 was supportive for virus replication, as RNAi knockdown and HSF1 small molecule inhibition prevented orthopoxvirus infection. Consistent with its role as a transcriptional activator, inhibition of several HSF1 targets also blocked vaccinia virus replication. These data show that orthopoxviruses co-opt host transcriptional responses for their own benefit, thereby effectively extending their functional genome to include genes residing within the host DNA. The dependence on HSF1 and its chaperone network offers multiple opportunities for antiviral drug development.
Zdroje
1. RimoinAW, MulembakaniPM, JohnstonSC, Lloyd SmithJO, KisaluNK, et al. (2010) Major increase in human monkeypox incidence 30 years after smallpox vaccination campaigns cease in the Democratic Republic of Congo. Proc Natl Acad Sci U S A 107 : 16262–16267 doi:10.1073/pnas.1005769107
2. DamasoCR, EspositoJJ, ConditRC, MoussatchéN (2000) An emergent poxvirus from humans and cattle in Rio de Janeiro State: Cantagalo virus may derive from Brazilian smallpox vaccine. Virology 277 : 439–449 doi:10.1006/viro.2000.0603
3. YangZ, ReynoldsSE, MartensCA, BrunoDP, PorcellaSF, et al. (2011) Expression profiling of the intermediate and late stages of poxvirus replication. J Virol 85 : 9899–9908 doi:10.1128/JVI.05446-11
4. YangZ, BrunoDP, MartensCA, PorcellaSF, MossB (2010) Simultaneous high-resolution analysis of vaccinia virus and host cell transcriptomes by deep RNA sequencing. Proc Natl Acad Sci U S A 107 : 11513–11518 doi:10.1073/pnas.1006594107
5. GuerraS, López-FernándezLA, Pascual-MontanoA, MuñozM, HarshmanK, et al. (2003) Cellular gene expression survey of vaccinia virus infection of human HeLa cells. J Virol 77 : 6493–6506.
6. SatheshkumarPS, AntonLC, SanzP, MossB (2009) Inhibition of the ubiquitin-proteasome system prevents vaccinia virus DNA replication and expression of intermediate and late genes. J Virol 83 : 2469–2479 doi:10.1128/JVI.01986-08
7. TealeA, CampbellS, Van BuurenN, MageeWC, WatmoughK, et al. (2009) Orthopoxviruses require a functional ubiquitin-proteasome system for productive replication. J Virol 83 : 2099–2108 doi:10.1128/JVI.01753-08
8. BECKERY, JOKLIKWK (1964) MESSENGER RNA IN CELLS INFECTED WITH VACCINIA VIRUS. Proc Natl Acad Sci U S A 51 : 577–585.
9. MercerJ, SnijderB, SacherR, BurkardC, BleckCKE, et al. (2012) RNAi Screening Reveals Proteasome - and Cullin3-Dependent Stages in Vaccinia Virus Infection. Cell Rep 2 : 1036–1047 doi:10.1016/j.celrep.2012.09.003
10. MoserTS, JonesRG, ThompsonCB, CoyneCB, CherryS (2010) A kinome RNAi screen identified AMPK as promoting poxvirus entry through the control of actin dynamics. PLoS Pathog 6: e1000954 doi:10.1371/journal.ppat.1000954
11. SivanG, MartinSE, MyersTG, BuehlerE, SzymczykKH, et al. (2013) Human genome-wide RNAi screen reveals a role for nuclear pore proteins in poxvirus morphogenesis. Proc Natl Acad Sci U S A doi:10.1073/pnas.1300708110
12. LuoB, CheungHW, SubramanianA, SharifniaT, OkamotoM, et al. (2008) Highly parallel identification of essential genes in cancer cells. Proc Natl Acad Sci U S A 105 : 20380–20385 doi:10.1073/pnas.0810485105
13. CheungHW, CowleyGS, WeirBA, BoehmJS, RusinS, et al. (2011) Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer. Proc Natl Acad Sci U S A 108 : 12372–12377 doi:10.1073/pnas.1109363108
14. WhittakerSR, TheurillatJ-P, Van AllenE, WagleN, HsiaoJ, et al. (2013) A genome-scale RNA interference screen implicates NF1 loss in resistance to RAF inhibition. Cancer Discov 3 : 350–362 doi:10.1158/2159-8290.CD-12-0470
15. DowerK, FiloneCM, HodgesEN, BjornsonZB, RubinsKH, et al. (2012) Identification of a pyridopyrimidinone inhibitor of orthopoxviruses from a diversity-oriented synthesis library. J Virol 86 : 2632–2640 doi:10.1128/JVI.05416-11
16. AshtonJM, BalysM, NeeringSJ, HassaneDC, CowleyG, et al. (2012) Gene sets identified with oncogene cooperativity analysis regulate in vivo growth and survival of leukemia stem cells. Cell Stem Cell 11 : 359–372 doi:10.1016/j.stem.2012.05.024
17. DowerK, RubinsKH, HensleyLE, ConnorJH (2011) Development of Vaccinia reporter viruses for rapid, high content analysis of viral function at all stages of gene expression. Antiviral Res 91 : 72–80 doi:10.1016/j.antiviral.2011.04.014
18. ParrishS, MossB (2007) Characterization of a second vaccinia virus mRNA-decapping enzyme conserved in poxviruses. J Virol 81 : 12973–12978 doi:10.1128/JVI.01668-07
19. ParrishS, ReschW, MossB (2007) Vaccinia virus D10 protein has mRNA decapping activity, providing a mechanism for control of host and viral gene expression. Proc Natl Acad Sci U S A 104 : 2139–2144 doi:10.1073/pnas.0611685104
20. SubramanianA, TamayoP, MoothaVK, MukherjeeS, EbertBL, et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102 : 15545–15550 doi:10.1073/pnas.0506580102
21. MendilloML, SantagataS, KoevaM, BellGW, HuR, et al. (2012) HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell 150 : 549–562 doi:10.1016/j.cell.2012.06.031
22. GuerraS, López-FernándezLA, Pascual-MontanoA, NájeraJL, ZaballosA, et al. (2006) Host response to the attenuated poxvirus vector NYVAC: upregulation of apoptotic genes and NF-kappaB-responsive genes in infected HeLa cells. J Virol 80 : 985–998 doi:10.1128/JVI.80.2.985-998.2006
23. BrumLM, LopezMC, VarelaJ-C, Baker HV, MoyerRW (2003) Microarray analysis of A549 cells infected with rabbitpox virus (RPV): a comparison of wild-type RPV and RPV deleted for the host range gene, SPI-1. Virology 315 : 322–334 doi:10.1016/S0042-6822(03)00532-4
24. KowalczykA, GuzikK, SlezakK, DziedzicJ, RokitaH (2005) Heat shock protein and heat shock factor 1 expression and localization in vaccinia virus infected human monocyte derived macrophages. J Inflamm (Lond) 2 : 12 doi:10.1186/1476-9255-2-12
25. PhillipsB, AbravayaK, MorimotoRI (1991) Analysis of the specificity and mechanism of transcriptional activation of the human hsp70 gene during infection by DNA viruses. J Virol 65 : 5680–5692.
26. SedgerL, RamshawI, CondieA, MedveczkyJ, BraithwaiteA, et al. (1996) Vaccinia virus replication is independent of cellular HSP72 expression which is induced during virus infection. Virology 225 : 423–427 doi:10.1006/viro.1996.0619
27. SedgerL, RubyJ (1994) Heat shock response to vaccinia virus infection. J Virol 68 : 4685–4689.
28. TrinkleinND, MurrayJI, HartmanSJ, BotsteinD, MyersRM (2004) The role of heat shock transcription factor 1 in the genome-wide regulation of the mammalian heat shock response. Mol Biol Cell 15 : 1254–1261 doi:10.1091/mbc.E03-10-0738
29. PageTJ, SikderD, YangL, PlutaL, WolfingerRD, et al. (2006) Genome-wide analysis of human HSF1 signaling reveals a transcriptional program linked to cellular adaptation and survival. Mol Biosyst 2 : 627–639 doi:10.1039/b606129j
30. SantoroMG (2000) Heat shock factors and the control of the stress response. Biochem Pharmacol 59 : 55–63 doi:10.1016/S0006-2952(99)00299-3
31. PIRKKALAL (2001) Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J 15 : 1118–1131 doi:10.1096/fj00-0294rev
32. MorimotoRI (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12 : 3788–3796 doi:10.1101/gad.12.24.3788
33. AnckarJ, SistonenL (2011) Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu Rev Biochem 80 : 1089–1115 doi:10.1146/annurev-biochem-060809-095203
34. EastonDP, KanekoY, SubjeckJR (2000) The hsp110 and Grp1 70 stress proteins: newly recognized relatives of the Hsp70s. Cell Stress Chaperones 5 : 276–290.
35. ShanerL, MoranoKA (2007) All in the family: atypical Hsp70 chaperones are conserved modulators of Hsp70 activity. Cell Stress Chaperones 12 : 1–8.
36. VosMJ, HagemanJ, CarraS, KampingaHH (2008) Structural and functional diversities between members of the human HSPB, HSPH, HSPA, and DNAJ chaperone families. Biochemistry 47 : 7001–7011 doi:10.1021/bi800639z
37. DaugaardM, RohdeM, JäätteläM (2007) The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions. FEBS Lett 581 : 3702–3710 doi:10.1016/j.febslet.2007.05.039
38. KampingaHH, HagemanJ, VosMJ, KubotaH, TanguayRM, et al. (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14 : 105–111 doi:10.1007/s12192-008-0068-7
39. McMillanDR, XiaoX, ShaoL, GravesK, BenjaminIJ (1998) Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection against heat-inducible apoptosis. J Biol Chem 273 : 7523–7528.
40. DaiC, WhitesellL, RogersAB, LindquistS (2007) Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 130 : 1005–1018 doi:10.1016/j.cell.2007.07.020
41. JollyC, UssonY, MorimotoRI (1999) Rapid and reversible relocalization of heat shock factor 1 within seconds to nuclear stress granules. Proc Natl Acad Sci U S A 96 : 6769–6774.
42. HolmbergCI, TranSEF, ErikssonJE, SistonenL (2002) Multisite phosphorylation provides sophisticated regulation of transcription factors. Trends Biochem Sci 27 : 619–627.
43. GuettoucheT, BoellmannF, LaneWS, VoellmyR (2005) Analysis of phosphorylation of human heat shock factor 1 in cells experiencing a stress. BMC Biochem 6 : 4 doi:10.1186/1471-2091-6-4
44. WesterheideSD, KawaharaTLA, OrtonK, MorimotoRI (2006) Triptolide, an inhibitor of the human heat shock response that enhances stress-induced cell death. J Biol Chem 281 : 9616–9622 doi:10.1074/jbc.M512044200
45. YokotaS, KitaharaM, NagataK (2000) Benzylidene lactam compound, KNK437, a novel inhibitor of acquisition of thermotolerance and heat shock protein induction in human colon carcinoma cells. Cancer Res 60 : 2942–2948.
46. OhnishiK, TakahashiA, YokotaS, OhnishiT (2004) Effects of a heat shock protein inhibitor KNK437 on heat sensitivity and heat tolerance in human squamous cell carcinoma cell lines differing in p53 status. Int J Radiat Biol 80 : 607–614 doi:10.1080/09553000412331283470
47. VoyerJ, HeikkilaJJ (2008) Comparison of the effect of heat shock factor inhibitor, KNK437, on heat shock - and chemical stress-induced hsp30 gene expression in Xenopus laevis A6 cells. Comp Biochem Physiol A Mol Integr Physiol 151 : 253–261 doi:10.1016/j.cbpa.2008.07.004
48. EliaG, AmiciC, RossiA, SantoroMG (1996) Modulation of prostaglandin A1-induced thermotolerance by quercetin in human leukemic cells: role of heat shock protein 70. Cancer Res 56 : 210–217.
49. HosokawaN, HirayoshiK, KudoH, TakechiH, AoikeA, et al. (1992) Inhibition of the activation of heat shock factor in vivo and in vitro by flavonoids. Mol Cell Biol 12 : 3490–3498.
50. NagaiN, NakaiA, NagataK (1995) Quercetin suppresses heat shock response by down regulation of HSF1. Biochem Biophys Res Commun 208 : 1099–1105 doi:10.1006/bbrc.1995.1447
51. YoonYJ, KimJA, ShinKD, ShinD-S, HanYM, et al. (2011) KRIBB11 inhibits HSP70 synthesis through inhibition of heat shock factor 1 function by impairing the recruitment of positive transcription elongation factor b to the hsp70 promoter. J Biol Chem 286 : 1737–1747 doi:10.1074/jbc.M110.179440
52. SantagataS, MendilloML, TangY, SubramanianA, PerleyCC, et al. (2013) Tight coordination of protein translation and HSF1 activation supports the anabolic malignant state. Science 341 : 1238303 doi:10.1126/science.1238303
53. LeuJI-J, PimkinaJ, FrankA, MurphyME, GeorgeDL (2009) A small molecule inhibitor of inducible heat shock protein 70. Mol Cell 36 : 15–27 doi:10.1016/j.molcel.2009.09.023
54. ShinKD, YoonYJ, KangY-R, SonK-H, KimHM, et al. (2008) KRIBB3, a novel microtubule inhibitor, induces mitotic arrest and apoptosis in human cancer cells. Biochem Pharmacol 75 : 383–394 doi:10.1016/j.bcp.2007.08.027
55. ShinKD, LeeM-Y, ShinD-S, LeeS, SonK-H, et al. (2005) Blocking tumor cell migration and invasion with biphenyl isoxazole derivative KRIBB3, a synthetic molecule that inhibits Hsp27 phosphorylation. J Biol Chem 280 : 41439–41448 doi:10.1074/jbc.M507209200
56. WangY, TrepelJB, NeckersLM, GiacconeG (2010) STA-9090, a small-molecule Hsp90 inhibitor for the potential treatment of cancer. Curr Opin Investig Drugs 11 : 1466–1476.
57. LinT-Y, BearM, DuZ, FoleyKP, YingW, et al. (2008) The novel HSP90 inhibitor STA-9090 exhibits activity against Kit-dependent and -independent malignant mast cell tumors. Exp Hematol 36 : 1266–1277 doi:10.1016/j.exphem.2008.05.001
58. ChangL, MiyataY, UngPMU, BertelsenEB, McQuadeTJ, et al. (2011) Chemical screens against a reconstituted multiprotein complex: myricetin blocks DnaJ regulation of DnaK through an allosteric mechanism. Chem Biol 18 : 210–221 doi:10.1016/j.chembiol.2010.12.010
59. JohnstonSC, LinKL, ConnorJH, RuthelG, GoffA, et al. (2012) In vitro inhibition of monkeypox virus production and spread by Interferon-β. Virol J 9 : 5 doi:10.1186/1743-422X-9-5
60. TeferiWM, DoddK, MaranchukR, FavisN, EvansDH (2013) A whole-genome RNA interference screen for human cell factors affecting myxoma virus replication. J Virol 87 : 4623–4641 doi:10.1128/JVI.02617-12
61. IzmailyanR, HsaoJ-C, ChungC-S, ChenC-H, HsuPW-C, et al. (2012) Integrin β1 mediates vaccinia virus entry through activation of PI3K/Akt signaling. J Virol 86 : 6677–6687 doi:10.1128/JVI.06860-11
62. HungJ-J, ChungC-S, ChangW (2002) Molecular Chaperone Hsp90 Is Important for Vaccinia Virus Growth in Cells. J Virol 76 : 1379–1390 doi:10.1128/JVI.76.3.1379-1390.2002
63. JindalS, YoungRA (1992) Vaccinia virus infection induces a stress response that leads to association of Hsp70 with viral proteins. J Virol 66 : 5357–5362.
64. Van VlietK, MohamedMR, ZhangL, VillaNY, WerdenSJ, et al. (2009) Poxvirus proteomics and virus-host protein interactions. Microbiol Mol Biol Rev 73 : 730–749 doi:10.1128/MMBR.00026-09
65. MazzonM, PetersNE, LoenarzC, KrysztofinskaEM, EmberSWJ, et al. (2013) A mechanism for induction of a hypoxic response by vaccinia virus. Proc Natl Acad Sci U S A doi:10.1073/pnas.1302140110
66. ManesNP, EstepRD, MottazHM, MooreRJ, ClaussTRW, et al. (2008) Comparative proteomics of human monkeypox and vaccinia intracellular mature and extracellular enveloped virions. J Proteome Res 7 : 960–968 doi:+10.1021/pr070432+
67. ChungC-S, ChenC-H, HoM-Y, HuangC-Y, LiaoC-L, et al. (2006) Vaccinia virus proteome: identification of proteins in vaccinia virus intracellular mature virion particles. J Virol 80 : 2127–2140 doi:10.1128/JVI.80.5.2127-2140.2006
68. ReschW, HixsonKK, MooreRJ, LiptonMS, MossB (2007) Protein composition of the vaccinia virus mature virion. Virology 358 : 233–247 doi:10.1016/j.virol.2006.08.025
69. LegendreM, SantiniS, RicoA, AbergelC, ClaverieJ-M (2011) Breaking the 1000-gene barrier for Mimivirus using ultra-deep genome and transcriptome sequencing. Virol J 8 : 99 doi:10.1186/1743-422X-8-99
70. RaoultD, AudicS, RobertC, AbergelC, RenestoP, et al. (2004) The 1.2-megabase genome sequence of Mimivirus. Science 306 : 1344–1350 doi:10.1126/science.1101485
71. AndradeAA, SilvaPNG, PereiraACTC, De SousaLP, FerreiraPCP, et al. (2004) The vaccinia virus-stimulated mitogen-activated protein kinase (MAPK) pathway is required for virus multiplication. Biochem J 381 : 437–446 doi:10.1042/BJ20031375
72. DaiC, SantagataS, TangZ, ShiJ, CaoJ, et al. (2012) Loss of tumor suppressor NF1 activates HSF1 to promote carcinogenesis. J Clin Invest 122 : 3742–3754 doi:10.1172/JCI62727
73. WangF-W, WuX-R, LiuW-J, LiaoY-J, LinS, et al. (2011) Heat shock factor 1 upregulates transcription of Epstein-Barr Virus nuclear antigen 1 by binding to a heat shock element within the BamHI-Q promoter. Virology 421 : 184–191 doi:10.1016/j.virol.2011.10.001
74. RawatP, MitraD (2011) Cellular heat shock factor 1 positively regulates human immunodeficiency virus-1 gene expression and replication by two distinct pathways. Nucleic Acids Res 39 : 5879–5892 doi:10.1093/nar/gkr198
75. TrapnellC, PachterL, SalzbergSL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25 : 1105–1111 doi:10.1093/bioinformatics/btp120
76. HarrowJ, FrankishA, GonzalezJM, TapanariE, DiekhansM, et al. (2012) GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res 22 : 1760–1774 doi:10.1101/gr.135350.111
77. RobinsonMD, McCarthyDJ, SmythGK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26 : 139–140 doi:10.1093/bioinformatics/btp616
Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium
Článek Structure of the Membrane Anchor of Pestivirus Glycoprotein E, a Long Tilted Amphipathic HelixČlánek Iron Acquisition in : The Roles of IlsA and Bacillibactin in Exogenous Ferritin Iron MobilizationČlánek AvrBsT Acetylates ACIP1, a Protein that Associates with Microtubules and Is Required for ImmunityČlánek Viral MicroRNA Effects on Pathogenesis of Polyomavirus SV40 Infections in Syrian Golden Hamsters
Článok vyšiel v časopisePLOS Pathogens
Najčítanejšie tento týždeň
2014 Číslo 2- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
-
Všetky články tohto čísla
- Viral Enhancer Mimicry of Host Innate-Immune Promoters
- The Epstein-Barr Virus-Encoded MicroRNA MiR-BART9 Promotes Tumor Metastasis by Targeting E-Cadherin in Nasopharyngeal Carcinoma
- Implication of PMLIV in Both Intrinsic and Innate Immunity
- The Consequences of Reconfiguring the Ambisense S Genome Segment of Rift Valley Fever Virus on Viral Replication in Mammalian and Mosquito Cells and for Genome Packaging
- Substrate-Induced Unfolding of Protein Disulfide Isomerase Displaces the Cholera Toxin A1 Subunit from Its Holotoxin
- Male-Killing Induces Sex-Specific Cell Death via Host Apoptotic Pathway
- Highly Active Antiretroviral Therapies Are Effective against HIV-1 Cell-to-Cell Transmission
- The microRNAs in an Ancient Protist Repress the Variant-Specific Surface Protein Expression by Targeting the Entire Coding Sequence
- Transmission-Blocking Antibodies against Mosquito C-Type Lectins for Dengue Prevention
- Type III Secretion Protein MxiI Is Recognized by Naip2 to Induce Nlrc4 Inflammasome Activation Independently of Pkcδ
- Lundep, a Sand Fly Salivary Endonuclease Increases Parasite Survival in Neutrophils and Inhibits XIIa Contact Activation in Human Plasma
- Induction of Type I Interferon Signaling Determines the Relative Pathogenicity of Strains
- Structure of the Membrane Anchor of Pestivirus Glycoprotein E, a Long Tilted Amphipathic Helix
- Foxp3 Regulatory T Cells Delay Expulsion of Intestinal Nematodes by Suppression of IL-9-Driven Mast Cell Activation in BALB/c but Not in C57BL/6 Mice
- Iron Acquisition in : The Roles of IlsA and Bacillibactin in Exogenous Ferritin Iron Mobilization
- MicroRNA Editing Facilitates Immune Elimination of HCMV Infected Cells
- Reversible Silencing of Cytomegalovirus Genomes by Type I Interferon Governs Virus Latency
- Identification of Host-Targeted Small Molecules That Restrict Intracellular Growth
- A Cyclophilin Homology Domain-Independent Role for Nup358 in HIV-1 Infection
- Engagement of NKG2D on Bystander Memory CD8 T Cells Promotes Increased Immunopathology following Infection
- Suppression of RNA Silencing by a Plant DNA Virus Satellite Requires a Host Calmodulin-Like Protein to Repress Expression
- CIB1 Synergizes with EphrinA2 to Regulate Kaposi's Sarcoma-Associated Herpesvirus Macropinocytic Entry in Human Microvascular Dermal Endothelial Cells
- A Gammaherpesvirus Bcl-2 Ortholog Blocks B Cell Receptor-Mediated Apoptosis and Promotes the Survival of Developing B Cells
- Metabolic Reprogramming during Purine Stress in the Protozoan Pathogen
- The Post-transcriptional Regulator / Activates T3SS by Stabilizing the 5′ UTR of , the Master Regulator of Genes, in
- Tailored Immune Responses: Novel Effector Helper T Cell Subsets in Protective Immunity
- AvrBsT Acetylates ACIP1, a Protein that Associates with Microtubules and Is Required for Immunity
- Epstein-Barr Virus Large Tegument Protein BPLF1 Contributes to Innate Immune Evasion through Interference with Toll-Like Receptor Signaling
- The Major Cellular Sterol Regulatory Pathway Is Required for Andes Virus Infection
- Insights into the Initiation of JC Virus DNA Replication Derived from the Crystal Structure of the T-Antigen Origin Binding Domain
- Domain Shuffling in a Sensor Protein Contributed to the Evolution of Insect Pathogenicity in Plant-Beneficial
- Lectin-Like Bacteriocins from spp. Utilise D-Rhamnose Containing Lipopolysaccharide as a Cellular Receptor
- A Compositional Look at the Human Gastrointestinal Microbiome and Immune Activation Parameters in HIV Infected Subjects
- Exploits Asparagine to Assimilate Nitrogen and Resist Acid Stress during Infection
- Interleukin-33 Increases Antibacterial Defense by Activation of Inducible Nitric Oxide Synthase in Skin
- Protective Vaccination against Papillomavirus-Induced Skin Tumors under Immunocompetent and Immunosuppressive Conditions: A Preclinical Study Using a Natural Outbred Animal Model
- Gem-Induced Cytoskeleton Remodeling Increases Cellular Migration of HTLV-1-Infected Cells, Formation of Infected-to-Target T-Cell Conjugates and Viral Transmission
- Viral MicroRNA Effects on Pathogenesis of Polyomavirus SV40 Infections in Syrian Golden Hamsters
- Genome-Wide RNAi Screen Identifies Broadly-Acting Host Factors That Inhibit Arbovirus Infection
- Inflammatory Monocytes Orchestrate Innate Antifungal Immunity in the Lung
- Quantitative and Qualitative Deficits in Neonatal Lung-Migratory Dendritic Cells Impact the Generation of the CD8+ T Cell Response
- Human Genome-Wide RNAi Screen Identifies an Essential Role for Inositol Pyrophosphates in Type-I Interferon Response
- The Master Regulator of the Cellular Stress Response (HSF1) Is Critical for Orthopoxvirus Infection
- Code-Assisted Discovery of TAL Effector Targets in Bacterial Leaf Streak of Rice Reveals Contrast with Bacterial Blight and a Novel Susceptibility Gene
- Competitive and Cooperative Interactions Mediate RNA Transfer from Herpesvirus Saimiri ORF57 to the Mammalian Export Adaptor ALYREF
- The Type III Secretion Chaperone Slc1 Engages Multiple Early Effectors, Including TepP, a Tyrosine-phosphorylated Protein Required for the Recruitment of CrkI-II to Nascent Inclusions and Innate Immune Signaling
- Yeasts: How Many Species Infect Humans and Animals?
- Clustering of Pattern Recognition Receptors for Fungal Detection
- Distinct Antiviral Responses in Pluripotent versus Differentiated Cells
- Igniting the Fire: Virulence Factors in the Pathogenesis of Sepsis
- Inactivation of the Host Lipin Gene Accelerates RNA Virus Replication through Viral Exploitation of the Expanded Endoplasmic Reticulum Membrane
- Inducible Deletion of CD28 Prior to Secondary Infection Impairs Worm Expulsion and Recall of Protective Memory CD4 T Cell Responses
- Clonal Expansion during Infection Dynamics Reveals the Effect of Antibiotic Intervention
- The Secreted Triose Phosphate Isomerase of Is Required to Sustain Microfilaria Production
- Unifying Viral Genetics and Human Transportation Data to Predict the Global Transmission Dynamics of Human Influenza H3N2
- ‘Death and Axes’: Unexpected Ca Entry Phenologs Predict New Anti-schistosomal Agents
- PLOS Pathogens
- Archív čísel
- Aktuálne číslo
- Informácie o časopise
Najčítanejšie v tomto čísle- Reversible Silencing of Cytomegalovirus Genomes by Type I Interferon Governs Virus Latency
- Implication of PMLIV in Both Intrinsic and Innate Immunity
- Transmission-Blocking Antibodies against Mosquito C-Type Lectins for Dengue Prevention
- Lundep, a Sand Fly Salivary Endonuclease Increases Parasite Survival in Neutrophils and Inhibits XIIa Contact Activation in Human Plasma
Prihlásenie#ADS_BOTTOM_SCRIPTS#Zabudnuté hesloZadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.
- Časopisy