#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Metabolic Reprogramming during Purine Stress in the Protozoan Pathogen


The ability of Leishmania to survive in their insect or mammalian host is dependent upon an ability to sense and adapt to changes in the microenvironment. However, little is known about the molecular mechanisms underlying the parasite response to environmental changes, such as nutrient availability. To elucidate nutrient stress response pathways in Leishmania donovani, we have used purine starvation as the paradigm. The salvage of purines from the host milieu is obligatory for parasite replication; nevertheless, purine-starved parasites can persist in culture without supplementary purine for over three months, indicating that the response to purine starvation is robust and engenders parasite survival under conditions of extreme scarcity. To understand metabolic reprogramming during purine starvation we have employed global approaches. Whole proteome comparisons between purine-starved and purine-replete parasites over a 6–48 h span have revealed a temporal and coordinated response to purine starvation. Purine transporters and enzymes involved in acquisition at the cell surface are upregulated within a few hours of purine removal from the media, while other key purine salvage components are upregulated later in the time-course and more modestly. After 48 h, the proteome of purine-starved parasites is extensively remodeled and adaptations to purine stress appear tailored to deal with both purine deprivation and general stress. To probe the molecular mechanisms affecting proteome remodeling in response to purine starvation, comparative RNA-seq analyses, qRT-PCR, and luciferase reporter assays were performed on purine-starved versus purine-replete parasites. While the regulation of a minority of proteins tracked with changes at the mRNA level, for many regulated proteins it appears that proteome remodeling during purine stress occurs primarily via translational and/or post-translational mechanisms.


Vyšlo v časopise: Metabolic Reprogramming during Purine Stress in the Protozoan Pathogen. PLoS Pathog 10(2): e32767. doi:10.1371/journal.ppat.1003938
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1003938

Souhrn

The ability of Leishmania to survive in their insect or mammalian host is dependent upon an ability to sense and adapt to changes in the microenvironment. However, little is known about the molecular mechanisms underlying the parasite response to environmental changes, such as nutrient availability. To elucidate nutrient stress response pathways in Leishmania donovani, we have used purine starvation as the paradigm. The salvage of purines from the host milieu is obligatory for parasite replication; nevertheless, purine-starved parasites can persist in culture without supplementary purine for over three months, indicating that the response to purine starvation is robust and engenders parasite survival under conditions of extreme scarcity. To understand metabolic reprogramming during purine starvation we have employed global approaches. Whole proteome comparisons between purine-starved and purine-replete parasites over a 6–48 h span have revealed a temporal and coordinated response to purine starvation. Purine transporters and enzymes involved in acquisition at the cell surface are upregulated within a few hours of purine removal from the media, while other key purine salvage components are upregulated later in the time-course and more modestly. After 48 h, the proteome of purine-starved parasites is extensively remodeled and adaptations to purine stress appear tailored to deal with both purine deprivation and general stress. To probe the molecular mechanisms affecting proteome remodeling in response to purine starvation, comparative RNA-seq analyses, qRT-PCR, and luciferase reporter assays were performed on purine-starved versus purine-replete parasites. While the regulation of a minority of proteins tracked with changes at the mRNA level, for many regulated proteins it appears that proteome remodeling during purine stress occurs primarily via translational and/or post-translational mechanisms.


Zdroje

1. W.H.O. Control of the leishmaniasis: report of a meeting of the WHO Expert Committee on the Control of Leishmaniases, Geneva, 22–26 March 2010. WHO technical report series: no 949 (http://whqlibdocwhoint/trs/WHO_TRS_949_engpdf).

2. CroftSL, SundarS, FairlambAH (2006) Drug resistance in leishmaniasis. Clin Microbiol Rev 19: 111–126.

3. LiraR, SundarS, MakhariaA, KenneyR, GamA, et al. (1999) Evidence that the high incidence of treatment failures in Indian kala-azar is due to the emergence of antimony-resistant strains of Leishmania donovani. J Infect Dis 180: 564–567.

4. FairlambAH (2003) Chemotherapy of human African trypanosomiasis: current and future prospects. Trends Parasitol 19: 488–494.

5. FrearsonJA, WyattPG, GilbertIH, FairlambAH (2007) Target assessment for antiparasitic drug discovery. Trends Parasitol 23: 589–595.

6. StuartK, BrunR, CroftS, FairlambA, GurtlerRE, et al. (2008) Kinetoplastids: related protozoan pathogens, different diseases. J Clin Invest 118: 1301–1310.

7. BurchmoreRJ, BarrettMP (2001) Life in vacuoles–nutrient acquisition by Leishmania amastigotes. Int J Parasitol 31: 1311–1320.

8. CarterNS, YatesPA, GessfordSK, GalaganSR, LandfearSM, et al. (2010) Adaptive responses to purine starvation in Leishmania donovani. Mol Microbiol 78: 92–107.

9. DarlyukI, GoldmanA, RobertsSC, UllmanB, RentschD, et al. (2009) Arginine homeostasis and transport in the human pathogen Leishmania donovani. J Biol Chem 284: 19800–19807.

10. FengX, FeistelT, BuffaloC, McCormackA, KruvandE, et al. (2011) Remodeling of protein and mRNA expression in Leishmania mexicana induced by deletion of glucose transporter genes. Mol Biochem Parasitol 175: 39–48.

11. FengX, Rodriguez-ContrerasD, BuffaloC, BouwerHG, KruvandE, et al. (2009) Amplification of an alternate transporter gene suppresses the avirulent phenotype of glucose transporter null mutants in Leishmania mexicana. Mol Microbiol 71: 369–381.

12. OrtizD, ValdesR, SanchezMA, HayengaJ, ElyaC, et al. (2010) Purine restriction induces pronounced translational upregulation of the NT1 adenosine/pyrimidine nucleoside transporter in Leishmania major. Mol Microbiol 78: 108–118.

13. SacciJBJr, CampbellTA, GottliebM (1990) Leishmania donovani: regulated changes in the level of expression of the surface 3′-nucleotidase/nuclease. Exp Parasitol 71: 158–168.

14. BhattacharyaA, BiswasA, DasPK (2012) Identification of a protein kinase A regulatory subunit from Leishmania having importance in metacyclogenesis through induction of autophagy. Mol Microbiol 83: 548–564.

15. SerafimTD, FigueiredoAB, CostaPA, Marques-da-SilvaEA, GoncalvesR, et al. (2012) Leishmania metacyclogenesis is promoted in the absence of purines. PLoS Negl Trop Dis 6: e1833.

16. WilliamsRA, TetleyL, MottramJC, CoombsGH (2006) Cysteine peptidases CPA and CPB are vital for autophagy and differentiation in Leishmania mexicana. Mol Microbiol 61: 655–674.

17. TonelliRR, Augusto LdaS, CastilhoBA, SchenkmanS (2011) Protein synthesis attenuation by phosphorylation of eIF2alpha is required for the differentiation of Trypanosoma cruzi into infective forms. PLoS One 6: e27904.

18. FigueiredoRC, RosaDS, SoaresMJ (2000) Differentiation of Trypanosoma cruzi epimastigotes: metacyclogenesis and adhesion to substrate are triggered by nutritional stress. J Parasitol 86: 1213–1218.

19. NaulaC, SeebeckT (2000) Cyclic AMP signaling in trypanosomatids. Parasitol Today 16: 35–38.

20. ParsonsM, RubenL (2000) Pathways involved in environmental sensing in trypanosomatids. Parasitol Today 16: 56–62.

21. CarterNS, YatesP, ArendtCS, BoitzJM, UllmanB (2008) Purine and pyrimidine metabolism in Leishmania. Adv Exp Med Biol 625: 141–154.

22. CarterNS, LandfearSM, UllmanB (2001) Nucleoside transporters of parasitic protozoa. Trends Parasitol 17: 142–145.

23. LandfearSM, UllmanB, CarterNS, SanchezMA (2004) Nucleoside and nucleobase transporters in parasitic protozoa. Eukaryot Cell 3: 245–254.

24. BergM, Van der VekenP, GoeminneA, HaemersA, AugustynsK (2010) Inhibitors of the purine salvage pathway: a valuable approach for antiprotozoal chemotherapy? Curr Med Chem 17: 2456–2481.

25. BoitzJM, UllmanB, JardimA, CarterNS (2012) Purine salvage in Leishmania: complex or simple by design? Trends Parasitol 28: 345–352.

26. Carter NS, Rager N, Ullman B (2003) Purine and Pyrimidine Transport and Metabolism. In: Marr JJ, Nilsen T, Komuniecki R, editors. Molecular and Medical Parasitology: Academic Press Limited, London. pp. 197–223.

27. DattaAK, DattaR, SenB (2008) Antiparasitic chemotherapy: tinkering with the purine salvage pathway. Adv Exp Med Biol 625: 116–132.

28. AllemanMM, GottliebM (1990) Crithidia luciliae: starvation for purines and/or phosphate leads to the enhanced surface expression of a protein responsible for 3′-nucleotidase/nuclease activity. Exp Parasitol 71: 146–157.

29. GottliebM (1985) Enzyme regulation in a trypanosomatid: effect of purine starvation on levels of 3′-nucleotidase activity. Science 227: 72–74.

30. SopwithWF, DebrabantA, YamageM, DwyerDM, BatesPA (2002) Developmentally regulated expression of a cell surface class I nuclease in Leishmania mexicana. Int J Parasitol 32: 449–459.

31. YamageM, DebrabantA, DwyerDM (2000) Molecular characterization of a hyperinducible, surface membrane-anchored, class I nuclease of a trypanosomatid parasite. J Biol Chem 275: 36369–36379.

32. YamageM, JoshiMB, DwyerDM (2007) Episomally driven antisense mRNA abrogates the hyperinducible expression and function of a unique cell surface class I nuclease in the primitive trypanosomatid parasite, Crithidia luciliae. J Mol Biol 373: 296–307.

33. LiuW, ArendtCS, GessfordSK, NtabaD, CarterNS, et al. (2005) Identification and characterization of purine nucleoside transporters from Crithidia fasciculata. Mol Biochem Parasitol 140: 1–12.

34. de KoningHP, WatsonCJ, SutcliffeL, JarvisSM (2000) Differential regulation of nucleoside and nucleobase transporters in Crithidia fasciculata and Trypanosoma brucei brucei. Mol Biochem Parasitol 106: 93–107.

35. HallST, HillierCJ, GeroAM (1996) Crithidia luciliae: regulation of purine nucleoside transport by extracellular purine concentrations. Exp Parasitol 83: 314–321.

36. OuelletteM, PapadopoulouB (2009) Coordinated gene expression by post-transcriptional regulons in African trypanosomes. J Biol 8: 100.

37. RequenaJM (2011) Lights and shadows on gene organization and regulation of gene expression in Leishmania. Front Biosci 16: 2069–2085.

38. MargueratS, BahlerJ (2010) RNA-seq: from technology to biology. Cell Mol Life Sci 67: 569–579.

39. MortazaviA, WilliamsBA, McCueK, SchaefferL, WoldB (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5: 621–628.

40. NagalakshmiU, WangZ, WaernK, ShouC, RahaD, et al. (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320: 1344–1349.

41. OzsolakF, MilosPM (2011) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12: 87–98.

42. SultanM, SchulzMH, RichardH, MagenA, KlingenhoffA, et al. (2008) A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 321: 956–960.

43. WangZ, GersteinM, SnyderM (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10: 57–63.

44. WilhelmBT, MargueratS, GoodheadI, BahlerJ (2010) Defining transcribed regions using RNA-seq. Nat Protoc 5: 255–266.

45. WilhelmBT, MargueratS, WattS, SchubertF, WoodV, et al. (2008) Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453: 1239–1243.

46. BurnumKE, HirotaY, BakerES, YoshieM, IbrahimYM, et al. (2012) Uterine deletion of Trp53 compromises antioxidant responses in the mouse decidua. Endocrinology 153: 4568–4579.

47. Pasa-TolicL, MasselonC, BarryRC, ShenY, SmithRD (2004) Proteomic analyses using an accurate mass and time tag strategy. Biotechniques 37: 621–636 passim, 621-624, 626-633, 636 passim.

48. QianWJ, JacobsJM, LiuT, CampDG2nd, SmithRD (2006) Advances and challenges in liquid chromatography-mass spectrometry-based proteomics profiling for clinical applications. Mol Cell Proteomics 5: 1727–1744.

49. PeacockCS, SeegerK, HarrisD, MurphyL, RuizJC, et al. (2007) Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet 39: 839–847.

50. AslettM, AurrecoecheaC, BerrimanM, BrestelliJ, BrunkBP, et al. (2010) TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res 38: D457–462.

51. CarterNS, DrewME, SanchezM, VasudevanG, LandfearSM, et al. (2000) Cloning of a novel inosine-guanosine transporter gene from Leishmania donovani by functional rescue of a transport-deficient mutant. J Biol Chem 275: 20935–20941.

52. VasudevanG, CarterNS, DrewME, BeverleySM, SanchezMA, et al. (1998) Cloning of Leishmania nucleoside transporter genes by rescue of a transport-deficient mutant. Proc Natl Acad Sci U S A 95: 9873–9878.

53. OrtizD, SanchezMA, PierceS, HerrmannT, KimblinN, et al. (2007) Molecular genetic analysis of purine nucleobase transport in Leishmania major. Mol Microbiol 64: 1228–1243.

54. DebrabantA, GottliebM, DwyerDM (1995) Isolation and characterization of the gene encoding the surface membrane 3′-nucleotidase/nuclease of Leishmania donovani. Mol Biochem Parasitol 71: 51–63.

55. DwyerDM, GottliebM (1984) Surface membrane localization of 3′- and 5′-nucleotidase activities in Leishmania donovani promastigotes. Mol Biochem Parasitol 10: 139–150.

56. GottliebM, DwyerDM (1981) Leishmania donovani: surface membrane acid phosphatase activity of promastigotes. Exp Parasitol 52: 117–128.

57. GottliebM, DwyerDM (1981) Protozoan parasite of humans: surface membrane with externally disposed acid phosphatase. Science 212: 939–941.

58. GottliebM, DwyerDM (1983) Evidence for distinct 5′- and 3′-nucleotidase activities in the surface membrane fraction of Leishmania donovani promastigotes. Mol Biochem Parasitol 7: 303–317.

59. AllenTE, HwangHY, JardimA, OlafsonR, UllmanB (1995) Cloning and expression of the hypoxanthine-guanine phosphoribosyltransferase from Leishmania donovani. Mol Biochem Parasitol 73: 133–143.

60. JardimA, BergesonSE, ShihS, CarterN, LucasRW, et al. (1999) Xanthine phosphoribosyltransferase from Leishmania donovani. Molecular cloning, biochemical characterization, and genetic analysis. J Biol Chem 274: 34403–34410.

61. OrtizD, SanchezMA, KochHP, LarssonHP, LandfearSM (2009) An acid-activated nucleobase transporter from Leishmania major. J Biol Chem 284: 16164–16169.

62. GingerML, NgazoaES, PereiraCA, PullenTJ, KabiriM, et al. (2005) Intracellular positioning of isoforms explains an unusually large adenylate kinase gene family in the parasite Trypanosoma brucei. J Biol Chem 280: 11781–11789.

63. KoszalkaGW, KrenitskyTA (1986) 5′-Methylthioadenosine (MTA) phosphorylase from promastigotes of Leishmania donovani. Adv Exp Med Biol 195 Pt B: 559–563.

64. Perez-PertejoY, RegueraRM, OrdonezD, Balana-FouceR (2006) Characterization of a methionine adenosyltransferase over-expressing strain in the trypanosomatid Leishmania donovani. Biochim Biophys Acta 1760: 10–19.

65. RegueraRM, Balana-FouceR, Perez-PertejoY, FernandezFJ, Garcia-EstradaC, et al. (2002) Cloning expression and characterization of methionine adenosyltransferase in Leishmania infantum promastigotes. J Biol Chem 277: 3158–3167.

66. JohnerA, KunzS, LinderM, ShakurY, SeebeckT (2006) Cyclic nucleotide specific phosphodiesterases of Leishmania major. BMC Microbiol 6: 25.

67. SeebeckT, SchaubR, JohnerA (2004) cAMP signalling in the kinetoplastid protozoa. Curr Mol Med 4: 585–599.

68. ShakurY, de KoningHP, KeH, KambayashiJ, SeebeckT (2011) Therapeutic potential of phosphodiesterase inhibitors in parasitic diseases. Handb Exp Pharmacol 487–510.

69. IngramGM, KinnairdJH (1999) Ribonucleotide reductase: A new target for antiparasite therapies. Parasitol Today 15: 338–342.

70. LyeLF, HsiehYH, SuKE, LeeST (1997) Cloning and functional analysis of the ribonucleotide reductase gene small subunit from hydroxyurea-resistant Leishmania mexicana amazonensis. Mol Biochem Parasitol 90: 353–358.

71. MilmanN, MotykaSA, EnglundPT, RobinsonD, ShlomaiJ (2007) Mitochondrial origin-binding protein UMSBP mediates DNA replication and segregation in trypanosomes. Proc Natl Acad Sci U S A 104: 19250–19255.

72. BringaudF, BarrettMP, ZilbersteinD (2012) Multiple roles of proline transport and metabolism in trypanosomatids. Front Biosci 17: 349–374.

73. DamerowS, LamerzAC, HaselhorstT, FuhringJ, ZarnovicanP, et al. (2010) Leishmania UDP-sugar pyrophosphorylase: the missing link in galactose salvage? J Biol Chem 285: 878–887.

74. MichelsPA, BringaudF, HermanM, HannaertV (2006) Metabolic functions of glycosomes in trypanosomatids. Biochim Biophys Acta 1763: 1463–1477.

75. OpperdoesFR (1987) Compartmentation of carbohydrate metabolism in trypanosomes. Annu Rev Microbiol 41: 127–151.

76. ParsonsM (2004) Glycosomes: parasites and the divergence of peroxisomal purpose. Mol Microbiol 53: 717–724.

77. OpperdoesFR, SzikoraJP (2006) In silico prediction of the glycosomal enzymes of Leishmania major and trypanosomes. Mol Biochem Parasitol 147: 193–206.

78. BerneyM, WeimarMR, HeikalA, CookGM (2012) Regulation of proline metabolism in mycobacteria and its role in carbon metabolism under hypoxia. Mol Microbiol 84: 664–681.

79. MagdalenoA, AhnIY, PaesLS, SilberAM (2009) Actions of a proline analogue, L-thiazolidine-4-carboxylic acid (T4C), on Trypanosoma cruzi. PLoS One 4: e4534.

80. PhangJM, LiuW, ZabirnykO (2010) Proline metabolism and microenvironmental stress. Annu Rev Nutr 30: 441–463.

81. VerbruggenN, HermansC (2008) Proline accumulation in plants: a review. Amino Acids 35: 753–759.

82. TakagiH (2008) Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications. Appl Microbiol Biotechnol 81: 211–223.

83. TonelliRR, SilberAM, Almeida-de-FariaM, HirataIY, ColliW, et al. (2004) L-proline is essential for the intracellular differentiation of Trypanosoma cruzi. Cell Microbiol 6: 733–741.

84. BesteiroS, WilliamsRA, CoombsGH, MottramJC (2007) Protein turnover and differentiation in Leishmania. Int J Parasitol 37: 1063–1075.

85. BesteiroS, WilliamsRA, MorrisonLS, CoombsGH, MottramJC (2006) Endosome sorting and autophagy are essential for differentiation and virulence of Leishmania major. J Biol Chem 281: 11384–11396.

86. RosenzweigD, SmithD, OpperdoesF, SternS, OlafsonRW, et al. (2008) Retooling Leishmania metabolism: from sand fly gut to human macrophage. FASEB J 22: 590–602.

87. BrennandA, Gualdron-LopezM, CoppensI, RigdenDJ, GingerML, et al. (2011) Autophagy in parasitic protists: unique features and drug targets. Mol Biochem Parasitol 177: 83–99.

88. WilliamsRA, WoodsKL, JulianoL, MottramJC, CoombsGH (2009) Characterization of unusual families of ATG8-like proteins and ATG12 in the protozoan parasite Leishmania major. Autophagy 5: 159–172.

89. GirardiJP, PereiraL, BakovicM (2011) De novo synthesis of phospholipids is coupled with autophagosome formation. Med Hypotheses 77: 1083–1087.

90. NebauerR, RosenbergerS, DaumG (2007) Phosphatidylethanolamine, a limiting factor of autophagy in yeast strains bearing a defect in the carboxypeptidase Y pathway of vacuolar targeting. J Biol Chem 282: 16736–16743.

91. ZhangK, PompeyJM, HsuFF, KeyP, BandhuvulaP, et al. (2007) Redirection of sphingolipid metabolism toward de novo synthesis of ethanolamine in Leishmania. EMBO J 26: 1094–1104.

92. GeraldNJ, CoppensI, DwyerDM (2007) Molecular dissection and expression of the LdK39 kinesin in the human pathogen, Leishmania donovani. Mol Microbiol 63: 962–979.

93. RequenaJM (2012) Lights and shadows on gene organization and regulation of gene expression in Leishmania. Front Biosci 17: 2069–2085.

94. MittraB, CortezM, HaydockA, RamasamyG, MylerPJ, et al. (2013) Iron uptake controls the generation of Leishmania infective forms through regulation of ROS levels. J Exp Med 210: 401–416.

95. DowningT, ImamuraH, DecuypereS, ClarkTG, CoombsGH, et al. (2011) Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Res 21: 2143–2156.

96. AbanadesDR, RamirezL, IborraS, SoteriadouK, GonzalezVM, et al. (2009) Key role of the 3′ untranslated region in the cell cycle regulated expression of the Leishmania infantum histone H2A genes: minor synergistic effect of the 5′ untranslated region. BMC Mol Biol 10: 48.

97. BringaudF, MullerM, CerqueiraGC, SmithM, RochetteA, et al. (2007) Members of a large retroposon family are determinants of post-transcriptional gene expression in Leishmania. PLoS Pathog 3: 1291–1307.

98. DavidM, GabdankI, Ben-DavidM, ZilkaA, OrrI, et al. (2010) Preferential translation of Hsp83 in Leishmania requires a thermosensitive polypyrimidine-rich element in the 3′ UTR and involves scanning of the 5′ UTR. RNA 16: 364–374.

99. Garcia-EstradaC, Perez-PertejoY, OrdonezD, Balana-FouceR, RegueraRM (2008) Characterization of the 5′ region of the Leishmania infantum LORIEN/MAT2 gene cluster and role of LORIEN flanking regions in post-transcriptional regulation. Biochimie 90: 1325–1336.

100. HaileS, DupeA, PapadopoulouB (2008) Deadenylation-independent stage-specific mRNA degradation in Leishmania. Nucleic Acids Res 36: 1634–1644.

101. HolzerTR, MishraKK, LeBowitzJH, ForneyJD (2008) Coordinate regulation of a family of promastigote-enriched mRNAs by the 3′UTR PRE element in Leishmania mexicana. Mol Biochem Parasitol 157: 54–64.

102. FrenchJB, YatesPA, SoysaDR, BoitzJM, CarterNS, et al. (2011) The Leishmania donovani UMP synthase is essential for promastigote viability and has an unusual tetrameric structure that exhibits substrate-controlled oligomerization. J Biol Chem 286: 20930–20941.

103. KheraA, VanderlelieJJ, PerkinsAV (2013) Selenium supplementation protects trophoblast cells from mitochondrial oxidative stress. Placenta 34: 594–598.

104. MortenKJ, BadderL, KnowlesHJ (2013) Differential regulation of HIF-mediated pathways increases mitochondrial metabolism and ATP production in hypoxic osteoclasts. J Pathol 229: 755–764.

105. ZhangHX, DuGH, ZhangJT (2004) Assay of mitochondrial functions by resazurin in vitro. Acta Pharmacol Sin 25: 385–389.

106. MaugeriDA, CazzuloJJ, BurchmoreRJ, BarrettMP, OgbunudePO (2003) Pentose phosphate metabolism in Leishmania mexicana. Mol Biochem Parasitol 130: 117–125.

107. RalserM, WamelinkMM, KowaldA, GerischB, HeerenG, et al. (2007) Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J Biol 6: 10.

108. LemonsJM, FengXJ, BennettBD, Legesse-MillerA, JohnsonEL, et al. (2010) Quiescent fibroblasts exhibit high metabolic activity. PLoS Biol 8: e1000514.

109. PettiAA, CrutchfieldCA, RabinowitzJD, BotsteinD (2011) Survival of starving yeast is correlated with oxidative stress response and nonrespiratory mitochondrial function. Proc Natl Acad Sci U S A 108: E1089–1098.

110. RuiB, ShenT, ZhouH, LiuJ, ChenJ, et al. (2010) A systematic investigation of Escherichia coli central carbon metabolism in response to superoxide stress. BMC Syst Biol 4: 122.

111. HusainA, SatoD, JeelaniG, SogaT, NozakiT (2012) Dramatic Increase in Glycerol Biosynthesis upon Oxidative Stress in the Anaerobic Protozoan Parasite Entamoeba histolytica. PLoS Negl Trop Dis 6: e1831.

112. FairlambAH, CeramiA (1992) Metabolism and functions of trypanothione in the Kinetoplastida. Annu Rev Microbiol 46: 695–729.

113. Krauth-SiegelLR, CominiMA, SchleckerT (2007) The trypanothione system. Subcell Biochem 44: 231–251.

114. Krauth-SiegelRL, CominiMA (2008) Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism. Biochim Biophys Acta 1780: 1236–1248.

115. SardarAH, KumarS, KumarA, PurkaitB, DasS, et al. (2013) Proteome changes associated with Leishmania donovani promastigote adaptation to oxidative and nitrosative stresses. J Proteomics

116. ClaytonC, ShapiraM (2007) Post-transcriptional regulation of gene expression in trypanosomes and leishmanias. Mol Biochem Parasitol 156: 93–101.

117. SchurchN, FurgerA, KurathU, RoditiI (1997) Contributions of the procyclin 3′ untranslated region and coding region to the regulation of expression in bloodstream forms of Trypanosoma brucei. Mol Biochem Parasitol 89: 109–121.

118. WestonD, La FlammeAC, Van VoorhisWC (1999) Expression of Trypanosoma cruzi surface antigen FL-160 is controlled by elements in the 3′ untranslated, the 3′ intergenic, and the coding regions. Mol Biochem Parasitol 102: 53–66.

119. LeeEK, GorospeM (2011) Coding region: the neglected post-transcriptional code. RNA Biol 8: 44–48.

120. HydeM, Block-AlperL, FelixJ, WebsterP, MeyerDI (2002) Induction of secretory pathway components in yeast is associated with increased stability of their mRNA. J Cell Biol 156: 993–1001.

121. UnsworthH, RaguzS, EdwardsHJ, HigginsCF, YagueE (2010) mRNA escape from stress granule sequestration is dictated by localization to the endoplasmic reticulum. FASEB J 24: 3370–3380.

122. BarakE, Amin-SpectorS, GerliakE, GoyardS, HollandN, et al. (2005) Differentiation of Leishmania donovani in host-free system: analysis of signal perception and response. Mol Biochem Parasitol 141: 99–108.

123. BatesPA, TetleyL (1993) Leishmania mexicana: induction of metacyclogenesis by cultivation of promastigotes at acidic pH. Exp Parasitol 76: 412–423.

124. OuakadM, VanaerschotM, RijalS, SundarS, SpeybroeckN, et al. (2011) Increased metacyclogenesis of antimony-resistant Leishmania donovani clinical lines. Parasitology 138: 1392–1399.

125. SadlovaJ, PriceHP, SmithBA, VotypkaJ, VolfP, et al. (2010) The stage-regulated HASPB and SHERP proteins are essential for differentiation of the protozoan parasite Leishmania major in its sand fly vector, Phlebotomus papatasi. Cell Microbiol 12: 1765–1779.

126. ZhangWW, CharestH, GhedinE, MatlashewskiG (1996) Identification and overexpression of the A2 amastigote-specific protein in Leishmania donovani. Mol Biochem Parasitol 78: 79–90.

127. NourbakhshF, UlianaSR, SmithDF (1996) Characterisation and expression of a stage-regulated gene of Leishmania major. Mol Biochem Parasitol 76: 201–213.

128. ZakaiHA, ChanceML, BatesPA (1998) In vitro stimulation of metacyclogenesis in Leishmania braziliensis, L. donovani, L. major and L. mexicana. Parasitology 116(Pt 4): 305–309.

129. RogersME, ChanceML, BatesPA (2002) The role of promastigote secretory gel in the origin and transmission of the infective stage of Leishmania mexicana by the sandfly Lutzomyia longipalpis. Parasitology 124: 495–507.

130. DwyerDM (1976) Antibody-induced modulation of Leishmania donovani surface membrane antigens. J Immunol 117: 2081–2091.

131. GoyardS, SegawaH, GordonJ, ShowalterM, DuncanR, et al. (2003) An in vitro system for developmental and genetic studies of Leishmania donovani phosphoglycans. Mol Biochem Parasitol 130: 31–42.

132. IovannisciDM, UllmanB (1983) High efficiency plating method for Leishmania promastigotes in semidefined or completely-defined medium. J Parasitol 69: 633–636.

133. WangY, YangF, GritsenkoMA, ClaussT, LiuT, et al. (2011) Reversed-phase chromatography with multiple fraction concatenation strategy for proteome profiling of human MCF10A cells. Proteomics 11: 2019–2026.

134. LivesayEA, TangK, TaylorBK, BuschbachMA, HopkinsDF, et al. (2008) Fully automated four-column capillary LC-MS system for maximizing throughput in proteomic analyses. Anal Chem 80: 294–302.

135. EngJ, McCormackAL, YatesJR3rd (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5: 976–989.

136. QianWJ, LiuT, MonroeME, StrittmatterEF, JacobsJM, et al. (2005) Probability-based evaluation of peptide and protein identifications from tandem mass spectrometry and SEQUEST analysis: the human proteome. J Proteome Res 4: 53–62.

137. PetritisK, KangasLJ, FergusonPL, AndersonGA, Pasa-TolicL, et al. (2003) Use of artificial neural networks for the accurate prediction of peptide liquid chromatography elution times in proteome analyses. Anal Chem 75: 1039–1048.

138. JaitlyN, MayampurathA, LittlefieldK, AdkinsJN, AndersonGA, et al. (2009) Decon2LS: An open-source software package for automated processing and visualization of high resolution mass spectrometry data. BMC Bioinformatics 10: 87.

139. MonroeME, TolicN, JaitlyN, ShawJL, AdkinsJN, et al. (2007) VIPER: an advanced software package to support high-throughput LC-MS peptide identification. Bioinformatics 23: 2021–2023.

140. PolpitiyaAD, QianWJ, JaitlyN, PetyukVA, AdkinsJN, et al. (2008) DAnTE: a statistical tool for quantitative analysis of -omics data. Bioinformatics 24: 1556–1558.

141. McCarthyFM, WangN, MageeGB, NanduriB, LawrenceML, et al. (2006) AgBase: a functional genomics resource for agriculture. BMC Genomics 7: 229.

142. Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Res 40: D71–75.

143. AltschulSF, GishW, MillerW, MyersEW, LipmanDJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410.

144. MukherjeeA, BoisvertS, Monte-NetoRL, CoelhoAC, RaymondF, et al. (2013) Telomeric gene deletion and intrachromosomal amplification in antimony-resistant Leishmania. Mol Microbiol 88: 189–202.

145. BatesLS (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39: 205–207.

146. LangmeadB, TrapnellC, PopM, SalzbergSL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: R25.

147. DilliesMA, RauA, AubertJ, Hennequet-AntierC, JeanmouginM, et al. (2012) A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief Bioinform

148. LivakKJ, SchmittgenTD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25: 402–408.

149. FulwilerAL, SoysaDR, UllmanB, YatesPA (2011) A rapid, efficient and economical method for generating leishmanial gene targeting constructs. Mol Biochem Parasitol 175: 209–212.

150. SaeedAI, SharovV, WhiteJ, LiJ, LiangW, et al. (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34: 374–378.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2014 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#