#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Exploits Asparagine to Assimilate Nitrogen and Resist Acid Stress during Infection


Mycobacterium tuberculosis is an intracellular pathogen. Within macrophages, M. tuberculosis thrives in a specialized membrane-bound vacuole, the phagosome, whose pH is slightly acidic, and where access to nutrients is limited. Understanding how the bacillus extracts and incorporates nutrients from its host may help develop novel strategies to combat tuberculosis. Here we show that M. tuberculosis employs the asparagine transporter AnsP2 and the secreted asparaginase AnsA to assimilate nitrogen and resist acid stress through asparagine hydrolysis and ammonia release. While the role of AnsP2 is partially spared by yet to be identified transporter(s), that of AnsA is crucial in both phagosome acidification arrest and intracellular replication, as an M. tuberculosis mutant lacking this asparaginase is ultimately attenuated in macrophages and in mice. Our study provides yet another example of the intimate link between physiology and virulence in the tubercle bacillus, and identifies a novel pathway to be targeted for therapeutic purposes.


Vyšlo v časopise: Exploits Asparagine to Assimilate Nitrogen and Resist Acid Stress during Infection. PLoS Pathog 10(2): e32767. doi:10.1371/journal.ppat.1003928
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1003928

Souhrn

Mycobacterium tuberculosis is an intracellular pathogen. Within macrophages, M. tuberculosis thrives in a specialized membrane-bound vacuole, the phagosome, whose pH is slightly acidic, and where access to nutrients is limited. Understanding how the bacillus extracts and incorporates nutrients from its host may help develop novel strategies to combat tuberculosis. Here we show that M. tuberculosis employs the asparagine transporter AnsP2 and the secreted asparaginase AnsA to assimilate nitrogen and resist acid stress through asparagine hydrolysis and ammonia release. While the role of AnsP2 is partially spared by yet to be identified transporter(s), that of AnsA is crucial in both phagosome acidification arrest and intracellular replication, as an M. tuberculosis mutant lacking this asparaginase is ultimately attenuated in macrophages and in mice. Our study provides yet another example of the intimate link between physiology and virulence in the tubercle bacillus, and identifies a novel pathway to be targeted for therapeutic purposes.


Zdroje

1. Cook GM, Berney M, Gebhard S, Heinemann M, Cox RA, et al.. (2009) Physiology of mycobacteria. Adv Microb Physiol 55: : 81–182, 318–189.

2. SchnappingerD (2006) Schoolnik GK, Ehrt S (2006) Expression profiling of host pathogen interactions: how Mycobacterium tuberculosis and the macrophage adapt to one another. Microbes Infect 8: 1132–1140.

3. ZhangYJ, RubinEJ (2013) Feast or famine: the host-pathogen battle over amino acids. Cell Microbiol 15: 1079–1087.

4. LeeBY, ClemensDL, HorwitzMA (2008) The metabolic activity of Mycobacterium tuberculosis, assessed by use of a novel inducible GFP expression system, correlates with its capacity to inhibit phagosomal maturation and acidification in human macrophages. Mol Microbiol 68: 1047–1060.

5. SimeoneR, BobardA, LippmannJ, BitterW, MajlessiL, et al. (2012) Phagosomal rupture by Mycobacterium tuberculosis results in toxicity and host cell death. PLoS Pathog 8: e1002507.

6. van der WelN, HavaD, HoubenD, FluitsmaD, van ZonM, et al. (2007) M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129: 1287–1298.

7. de ChastellierC (2009) The many niches and strategies used by pathogenic mycobacteria for survival within host macrophages. Immunobiology 214: 526–542.

8. EhrtS, SchnappingerD (2009) Mycobacterial survival strategies in the phagosome: defence against host stresses. Cell Microbiol 11: 1170–1178.

9. RussellDG (2001) Mycobacterium tuberculosis: here today, and here tomorrow. Nat Rev Mol Cell Biol 2: 569–577.

10. RussellDG (2011) Mycobacterium tuberculosis and the intimate discourse of a chronic infection. Immunol Rev 240: 252–268.

11. SchaibleUE, Sturgill-KoszyckiS, SchlesingerPH, RussellDG (1998) Cytokine activation leads to acidification and increases maturation of Mycobacterium avium-containing phagosomes in murine macrophages. J Immunol 160: 1290–1296.

12. ViaLE, FrattiRA, McFaloneM, Pagan-RamosE, DereticD, et al. (1998) Effects of cytokines on mycobacterial phagosome maturation. J Cell Sci 111 (Pt 7): 897–905.

13. AppelbergR (2006) Macrophage nutriprive antimicrobial mechanisms. J Leukoc Biol 79: 1117–1128.

14. HomolkaS, NiemannS, RussellDG, RohdeKH (2010) Functional genetic diversity among Mycobacterium tuberculosis complex clinical isolates: delineation of conserved core and lineage-specific transcriptomes during intracellular survival. PLoS Pathog 6: e1000988.

15. RohdeKH, AbramovitchRB, RussellDG (2007) Mycobacterium tuberculosis invasion of macrophages: linking bacterial gene expression to environmental cues. Cell Host Microbe 2: 352–364.

16. RohdeKH, VeigaDF, CaldwellS, BalazsiG, RussellDG (2012) Linking the transcriptional profiles and the physiological states of Mycobacterium tuberculosis during an extended intracellular infection. PLoS Pathog 8: e1002769.

17. SchnappingerD, EhrtS, VoskuilMI, LiuY, ManganJA, et al. (2003) Transcriptional Adaptation of Mycobacterium tuberculosis within Macrophages: Insights into the Phagosomal Environment. J Exp Med 198: 693–704.

18. TailleuxL, WaddellSJ, PelizzolaM, MortellaroA, WithersM, et al. (2008) Probing host pathogen cross-talk by transcriptional profiling of both Mycobacterium tuberculosis and infected human dendritic cells and macrophages. PLoS One 3: e1403.

19. de CarvalhoLP, FischerSM, MarreroJ, NathanC, EhrtS, et al. (2010) Metabolomics of Mycobacterium tuberculosis reveals compartmentalized co-catabolism of carbon substrates. Chem Biol 17: 1122–1131.

20. MarreroJ, TrujilloC, RheeKY, EhrtS (2013) Glucose phosphorylation is required for Mycobacterium tuberculosis persistence in mice. PLoS Pathog 9: e1003116.

21. McKinneyJD, Honer zu BentrupK, Munoz-EliasEJ, MiczakA, ChenB, et al. (2000) Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406: 735–738.

22. PandeyAK, SassettiCM (2008) Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci U S A 105: 4376–4380.

23. RheeKY, de CarvalhoLP, BrykR, EhrtS, MarreroJ, et al. (2011) Central carbon metabolism in Mycobacterium tuberculosis: an unexpected frontier. Trends Microbiol 19: 307–314.

24. GriffinJE, PandeyAK, GilmoreSA, MizrahiV, McKinneyJD, et al. (2012) Cholesterol catabolism by Mycobacterium tuberculosis requires transcriptional and metabolic adaptations. Chem Biol 19: 218–227.

25. AmonJ, TitgemeyerF, BurkovskiA (2009) A genomic view on nitrogen metabolism and nitrogen control in mycobacteria. J Mol Microbiol Biotechnol 17: 20–29.

26. CarrollP, PashleyCA, ParishT (2008) Functional analysis of GlnE, an essential adenylyl transferase in Mycobacterium tuberculosis. J Bacteriol 190: 4894–4902.

27. HarperC, HaywardD, WiidI, van HeldenP (2008) Regulation of nitrogen metabolism in Mycobacterium tuberculosis: a comparison with mechanisms in Corynebacterium glutamicum and Streptomyces coelicolor. IUBMB Life 60: 643–650.

28. HarthG, Maslesa-GalicS, TulliusMV, HorwitzMA (2005) All four Mycobacterium tuberculosis glnA genes encode glutamine synthetase activities but only GlnA1 is abundantly expressed and essential for bacterial homeostasis. Mol Microbiol 58: 1157–1172.

29. TulliusMV, HarthG, HorwitzMA (2003) Glutamine synthetase GlnA1 is essential for growth of Mycobacterium tuberculosis in human THP-1 macrophages and guinea pigs. Infect Immun 71: 3927–3936.

30. GouzyA, Larrouy-MaumusG, WuT-D, PeixotoA, LevillainF, et al. (2013) Mycobacterium tuberculosis nitrogen assimilation and host colonization require aspartate. Nat Chem Biol 9: 674–676.

31. GouzyA, PoquetY, NeyrollesO (2013) A central role for aspartate in Mycobacterium tuberculosis physiology and virulence. Front Cell Infect Microbiol 3: 68.

32. ColeST, BroschR, ParkhillJ, GarnierT, ChurcherC, et al. (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393: 537–544.

33. LyonRH, HallWH, Costas-MartinezC (1970) Utilization of Amino Acids During Growth of Mycobacterium tuberculosis in Rotary Cultures. Infect Immun 1: 513–520.

34. LyonRH, HallWH, Costas-MartinezC (1974) Effect of L-asparagine on growth of Mycobacterium tuberculosis and on utilization of other amino acids. J Bacteriol 117: 151–156.

35. JenningsMP, AndersonJK, BeachamIR (1995) Cloning and molecular analysis of the Salmonella enterica ansP gene, encoding an L-asparagine permease. Microbiology 141 (Pt 1): 141–146.

36. RachmanH, StrongM, UlrichsT, GrodeL, SchuchhardtJ, et al. (2006) Unique transcriptome signature of Mycobacterium tuberculosis in pulmonary tuberculosis. Infect Immun 74: 1233–1242.

37. van KesselJC, HatfullGF (2007) Recombineering in Mycobacterium tuberculosis. Nat Methods 4: 147–152.

38. Katayama T, Tanaka S, Aoki K (1954) [Aminoacids metabolism of tubercle bacillus. II. Studies on the asparaginase].Kekkaku 29: : 472–476; English summary, 510–471 .

39. KirchheimerF, WhittakerCK (1954) Asparaginase of Mycobacteria. Am Rev Tuberc 70: 920–921.

40. CaiX, WuB, FangY, SongH (2012) [Asparaginase mediated acid adaptation of mycobacteria]. Wei Sheng Wu Xue Bao 52: 1467–1476.

41. JackDL, PaulsenIT, SaierMH (2000) The amino acid/polyamine/organocation (APC) superfamily of transporters specific for amino acids, polyamines and organocations. Microbiology 146 (Pt 8): 1797–1814.

42. SrikhantaYN, AtackJM, BeachamIR, JenningsMP (2013) Distinct physiological roles for the two L-asparaginase isozymes of Escherichia coli. Biochem Biophys Res Commun 436(3): 362–5.

43. EhrtS, GuoXV, HickeyCM, RyouM, MonteleoneM, et al. (2005) Controlling gene expression in mycobacteria with anhydrotetracycline and Tet repressor. Nucleic Acids Res 33: e21.

44. SassettiCM, BoydDH, RubinEJ (2003) Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48: 77–84.

45. ZhangYJ, IoergerTR, HuttenhowerC, LongJE, SassettiCM, et al. (2012) Global assessment of genomic regions required for growth in Mycobacterium tuberculosis. PLoS Pathog 8: e1002946.

46. SongH, HuffJ, JanikK, WalterK, KellerC, et al. (2011) Expression of the ompATb operon accelerates ammonia secretion and adaptation of Mycobacterium tuberculosis to acidic environments. Mol Microbiol 80: 900–918.

47. RecchiC, ChavrierP (2006) V-ATPase: a potential pH sensor. Nat Cell Biol 8: 107–109.

48. BraunsteinM, BrownAM, KurtzS, JacobsWRJr (2001) Two nonredundant SecA homologues function in mycobacteria. J Bacteriol 183: 6979–6990.

49. BraunsteinM, EspinosaBJ, ChanJ, BelisleJT, JacobsWRJr (2003) SecA2 functions in the secretion of superoxide dismutase A and in the virulence of Mycobacterium tuberculosis. Mol Microbiol 48: 453–464.

50. AbdallahAM, Gey van PittiusNC, ChampionPA, CoxJ, LuirinkJ, et al. (2007) Type VII secretion—mycobacteria show the way. Nat Rev Microbiol 5: 883–891.

51. CooneyDA, CapizziRL, HandschumacherRE (1970) Evaluation of L-asparagine metabolism in animals and man. Cancer Res 30: 929–935.

52. CanepaA, FilhoJC, GutierrezA, CarreaA, ForsbergAM, et al. (2002) Free amino acids in plasma, red blood cells, polymorphonuclear leukocytes, and muscle in normal and uraemic children. Nephrol Dial Transplant 17: 413–421.

53. LinW, MathysV, AngEL, KohVH, Martinez GomezJM, et al. (2012) Urease activity represents an alternative pathway for Mycobacterium tuberculosis nitrogen metabolism. Infect Immun 80: 2771–2779.

54. ReyratJM, Lopez-RamirezG, OfredoC, GicquelB, WinterN (1996) Urease activity does not contribute dramatically to persistence of Mycobacterium bovis bacillus Calmette-Guerin. Infect Immun 64: 3934–3936.

55. SendideK, DeghmaneAE, ReyratJM, TalalA, HmamaZ (2004) Mycobacterium bovis BCG urease attenuates major histocompatibility complex class II trafficking to the macrophage cell surface. Infect Immun 72: 4200–4209.

56. HofreuterD, NovikV, GalanJE (2008) Metabolic diversity in Campylobacter jejuni enhances specific tissue colonization. Cell Host Microbe 4: 425–433.

57. KullasAL, McClellandM, YangHJ, TamJW, TorresA, et al. (2012) L-asparaginase II produced by Salmonella typhimurium inhibits T cell responses and mediates virulence. Cell Host Microbe 12: 791–798.

58. LeducD, GallaudJ, StinglK, de ReuseH (2010) Coupled amino acid deamidase-transport systems essential for Helicobacter pylori colonization. Infect Immun 78: 2782–2792.

59. ScottiC, SommiP, PasquettoMV, CappellettiD, StivalaS, et al. (2010) Cell-cycle inhibition by Helicobacter pylori L-asparaginase. PLoS One 5: e13892.

60. ShibayamaK, TakeuchiH, WachinoJ, MoriS, ArakawaY (2011) Biochemical and pathophysiological characterization of Helicobacter pylori asparaginase. Microbiol Immunol 55: 408–417.

61. DalekeMH, UmmelsR, BawonoP, HeringaJ, Vandenbroucke-GraulsCM, et al. (2012) General secretion signal for the mycobacterial type VII secretion pathway. Proc Natl Acad Sci U S A 109: 11342–11347.

62. BottaiD, Di LucaM, MajlessiL, FriguiW, SimeoneR, et al. (2012) Disruption of the ESX-5 system of Mycobacterium tuberculosis causes loss of PPE protein secretion, reduction of cell wall integrity and strong attenuation. Mol Microbiol 83: 1195–1209.

63. BottaiD, MajlessiL, SimeoneR, FriguiW, LaurentC, et al. (2011) ESAT-6 secretion-independent impact of ESX-1 genes espF and espG1 on virulence of Mycobacterium tuberculosis. J Infect Dis 203: 1155–1164.

64. Woong ParkS, KlotzscheM, WilsonDJ, BoshoffHI, EohH, et al. (2011) Evaluating the sensitivity of Mycobacterium tuberculosis to biotin deprivation using regulated gene expression. PLoS Pathog 7: e1002264.

65. PesekJJ, MatyskaMT, FischerSM, SanaTR (2008) Analysis of hydrophilic metabolites by high-performance liquid chromatography-mass spectrometry using a silica hydride-based stationary phase. J Chromatogr A 1204: 48–55.

66. Guerquin-KernJL, WuTD, QuintanaC, CroisyA (2005) Progress in analytical imaging of the cell by dynamic secondary ion mass spectrometry (SIMS microscopy). Biochim Biophys Acta 1724: 228–238.

67. SchneiderCA, RasbandWS, EliceiriKW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9: 671–675.

68. LecheneC, HillionF, McMahonG, BensonD, KleinfeldAM, et al. (2006) High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry. J Biol 5: 20.

69. CarlemalmE, VilligerW, HobotJA, AcetarinJD, KellenbergerE (1985) Low temperature embedding with Lowicryl resins: two new formulations and some applications. J Microsc 140: 55–63.

70. HainfeldJF, LiuW, HalseyCM, FreimuthP, PowellRD (1999) Ni-NTA-gold clusters target His-tagged proteins. J Struct Biol 127: 185–198.

71. ReddyV, LymarE, HuM, HainfeldJF (2005) 5 nm Gold-Ni-NTA Binds His Tags. Microsc Microanal 11 Suppl 21118–1119.

72. BrodinP, PoquetY, LevillainF, PeguilletI, Larrouy-MaumusG, et al. (2010) High content phenotypic cell-based visual screen identifies Mycobacterium tuberculosis acyltrehalose-containing glycolipids involved in phagosome remodeling. PLoS Pathog 6: e1001100.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2014 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#