#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

‘Death and Axes’: Unexpected Ca Entry Phenologs Predict New Anti-schistosomal Agents


Schistosomiasis is a parasitic flatworm disease that infects 200 million people worldwide. The drug praziquantel (PZQ) is the mainstay therapy but the target of this drug remains ambiguous. While PZQ paralyses and kills parasitic schistosomes, in free-living planarians PZQ caused an unusual axis duplication during regeneration to yield two-headed animals. Here, we show that PZQ activation of a neuronal Ca2+ channel modulates opposing dopaminergic and serotonergic pathways to regulate ‘head’ structure formation. Surprisingly, compounds with efficacy for either bioaminergic network in planarians also displayed antischistosomal activity, and reciprocally, agents first identified as antischistocidal compounds caused bipolar regeneration in the planarian bioassay. These divergent outcomes (death versus axis duplication) result from the same Ca2+ entry mechanism, and comprise unexpected Ca2+ phenologs with meaningful predictive value. Surprisingly, basic research into axis patterning mechanisms provides an unexpected route for discovering novel antischistosomal agents.


Vyšlo v časopise: ‘Death and Axes’: Unexpected Ca Entry Phenologs Predict New Anti-schistosomal Agents. PLoS Pathog 10(2): e32767. doi:10.1371/journal.ppat.1003942
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1003942

Souhrn

Schistosomiasis is a parasitic flatworm disease that infects 200 million people worldwide. The drug praziquantel (PZQ) is the mainstay therapy but the target of this drug remains ambiguous. While PZQ paralyses and kills parasitic schistosomes, in free-living planarians PZQ caused an unusual axis duplication during regeneration to yield two-headed animals. Here, we show that PZQ activation of a neuronal Ca2+ channel modulates opposing dopaminergic and serotonergic pathways to regulate ‘head’ structure formation. Surprisingly, compounds with efficacy for either bioaminergic network in planarians also displayed antischistosomal activity, and reciprocally, agents first identified as antischistocidal compounds caused bipolar regeneration in the planarian bioassay. These divergent outcomes (death versus axis duplication) result from the same Ca2+ entry mechanism, and comprise unexpected Ca2+ phenologs with meaningful predictive value. Surprisingly, basic research into axis patterning mechanisms provides an unexpected route for discovering novel antischistosomal agents.


Zdroje

1. FanPC, KangYC (2003) Egg production capacity of one-pair worms of Schistosoma japonicum in albino mice. Southeast Asian Journal of Tropical Medicine and Public Health 34: 708–712.

2. KingCH, Dangerfield-ChaM (2008) The unacknowledged impact of chronic schistosomiasis. Chronic Illn 4: 65–79.

3. HotezPJ, FenwickA (2009) Schistosomiasis in Africa: an emerging tragedy in our new global health decade. PLoS Neglected Tropical Diseases 3: e485.

4. HotezPJ, EngelsD, FenwickA, SavioliL (2010) Africa is desperate for praziquantel. Lancet 376: 496–498.

5. AndrewsP, ThomasH, PohlkeR, SeubertJ (1983) Praziquantel. Medicinal Research Reviews 3: 147–200.

6. DomlingA, KhouryK (2010) Praziquantel and schistosomiasis. ChemMedChem 5: 1420–1434.

7. CioliD, Pica-MattocciaL (2003) Praziquantel. Parasitology Research 90: S3–S9.

8. PaxR, BennettJL, FettererR (1978) A benzodiazepine derivative and praziquantel: effects on musculature of Schistosoma mansoni and Schistosoma japonicum. Archives Pharmacol 304: 309–315.

9. FenwickA, WebsterJP, Bosque-OlivaE, BlairL, FlemingFM, et al. (2009) The Schistosomiasis Control Initiative (SCI): rationale, development and implementation from 2002–2008. Parasitology 136: 1719–1730.

10. SadhuPS, KumarSN, ChandrasekharamM, Pica-MattocciaL, CioliD, et al. (2012) Synthesis of new praziquantel analogues: potential candidates for the treatment of schistosomiasis. Bioorganic and Medicinal Chemistry Letters 22: 1103–1106.

11. LiuH, WilliamS, HerdtweckE, BotrosS, DomlingA (2012) MCR synthesis of praziquantel derivatives. Chemical Biology and Drug Design 79: 470–477.

12. ElliotSA, Sanchez AlvaradoA (2012) The history and enduring contributions of planarians to the study of animal regeneration. WIREs Dev Biol 2: 301–326 doi:10.1002/wdev.1082

13. RinkJC (2013) Stem cell systems and regeneration in planaria. Development Genes and Evolution 223: 67–84.

14. NogiT, ZhangD, ChanJD, MarchantJS (2009) A Novel Biological Activity of Praziquantel Requiring Voltage-Operated Ca2+ Channel β subunits: Subversion of Flatworm Regenerative Polarity. PLoS Neglected Tropical Diseases 3: e464.

15. ZhangD, ChanJD, NogiT, MarchantJS (2011) Opposing roles of voltage-gated Ca2+ channels in neuronal control of stem cell differentiation in vivo. Journal of Neuroscience 31: 15983–15995.

16. Wolde MussieE, Vande WaaJ, PaxRA, FettererR, BennettJL (1982) Schistosoma mansoni: calcium efflux and effects of calcium-free media on responses of the adult male musculature to praziquantel and other agents inducing contraction. Experimental Parasitology 53: 270–278.

17. ChanJD, ZarowieckiM, MarchantJS (2013) Ca2+ channels and Praziquantel: a view from the free world. Parasitology International S1383-5769(1312)00161-00164.

18. KohnAB, AndersonPAV, Roberts-MisterlyJM, GreenbergRM (2001) Schistosome calcium channel β subunits. UNUSUAL MODULATORY EFFECTS AND POTENTIAL ROLE IN THE ACTION OF THE ANTISCHISTOSOMAL DRUG PRAZIQUANTEL. Journal of Biological Chemistry 40: 36873–36876.

19. KohnAB, Roberts-MisterlyJM, AndersonPAV, KhanN, GreenbergRM (2003) Specific sites in the beta interaction domain of a schistosome Ca2+ channel β subunit are key to its role in sensitivity to the anti-schistosomal drug praziquantel. Parasitology 127: 349–356.

20. Hines-KayJ, CupitPM, SanchezMC, RosenbergGH, HaneltB, et al. (2012) Transcriptional analysis of Schistosoma mansoni treated with praziquantel in vitro. Molecular and Biochemical Parasitology 186: 87–94.

21. YouH, McManusDP, HuW, SmoutMJ, BrindleyPJ, et al. (2013) Transcriptional responses of in vivo praziquantel exposure in schistosomes identifies a functional role for calcium signalling pathway member CamKII. PLoS Pathog 9: e1003254.

22. AragonAD, ImaniRA, BlackburnVR, CupitPM, SandraDM, et al. (2009) Towards an understanding of the mechanism of action of praziquantel. Molecular and Biochemical Parasitology 164: 57–65.

23. McGaryKL, ParkTJ, WoodsJO, ChaHJ, WallingfordJB, et al. (2010) Systematic discovery of nonobvious human disease models through orthologous phenotypes. Proceedings of the National Academy of Sciences of the United States of America 107: 6544–6549.

24. EvansRM, ZamponiGW (2006) Presynaptic Ca2+ channels-integration centers for neuronal signaling pathways. TRENDS in Neurosciences 29: 617–624.

25. KennedyMJ, EhlersMD (2011) Mechanisms and function of dendritic exocytosis. Neuron 69: 856–875.

26. BagunaJ, SaloE, RomeroR (1989) Effects of activators and antagonists of the neuropeptides substance P and substance K on cell proliferation in planarians. International Journal of Developmental Biology 33: 261–266.

27. RibeiroP, El-ShehabiF, PatockaN (2005) Classical transmitters and their receptors in flatworms. Parasitology 131: S19–S40.

28. UmesonoY, AgataK (2009) Evolution and regeneration of the planarian central nervous system. Development Growth and Differentiation 51: 185–195.

29. HaltonDW, MauleAG (2004) Functional morphology of the platyhelminth nervous system. Parasitology 82: 316–333.

30. CollinsJJ, HouX, RomanovaEV, LambrusBG, MillerCM, et al. (2010) Genome-wide analyses reveal a role for peptide hormones in planarian germline development. PLoS Biology 8: e10000509.

31. ZamanianM, KimberMJ, McVeighP, CarlsonSA, MauleAG, et al. (2011) The repertoire of G protein-coupled receptors in the human parasite Schistosoma mansoni and the model organism Schmidtea mediterranea. BMC Genomics 12: 596.

32. RibeiroP, GuptaV, El-SakkaryN (2012) Biogenic amines and the control of neuromuscular signaling in schistosomes. Invertebrate Neuroscience 12: 13–28.

33. AgataK, SoejimaY, KatoK, KobayashiC, UmesonoY, et al. (1998) Structure of the planarian central nervous system (CNS) revealed by neuronal cell markers. Zoological Science 15: 433–440.

34. ReddienPW, BermangeAL, MurfittKJ, JenningsJR, Sánchez AlvaradoA (2005) Identification of genes needed for regeneration, stem cell function, and tissue homeostasis by systematic gene perturbation in planaria. Developmental Cell 8: 635–649.

35. NishimuraK, KitamuraY, UmesonoY, TakeuchiK, TakataK, et al. (2008) Identification of glutamic acid decarboxylase gene and distribution of GABAergic nervous system in the planarian Dugesia japonica. Neuroscience 153: 1103–1114.

36. NishimuraK, KitamuraY, TaniguchiT, AgataK (2010) Analysis of motor function modulated by cholinergic neurons in planarian Dugesia japonica. Neuroscience 168: 18–30.

37. NishimuraK, KitamuraY, InoueT, UmesonoY, SanoS, et al. (2007) Reconstruction of dopaminergic neural network and locomotion function in planarian regenerates. Developmenal Neurobiology 67: 1059–1078.

38. NishimuraK, KitamuraY, InoueT, UmesonoY, YoshimotoK, et al. (2007) Identification and distribution of tryptophan hydroxylase (TPH)-positive neurons in the planarian Dugesia japonica. Neuroscience Research 59: 101–106.

39. El-ShehabiF, TamanA, MoaliLS, El-SakkaryN, RibeiroP (2012) A novel G protein-coupled receptor of Schistosoma mansoni (SmGPR-3) is activated by dopamine and is widely expressed in the nervous system. PLoS Negl Trop Dis 6: e1523.

40. AlgeriS, CaroleiA, FerrettiP, GalloneC, PalladiniG, et al. (1983) Effects of dopaminergic agents on monoamine levels and motor behaviour in planaria. Comparative Biochemistry and Physiology C: Comparative Pharmacology 74: 27–29.

41. CurrieKW, PearsonBJ (2013) Transcription factors lhx1/5-1 and pitx are required for the maintenance and regeneration of serotonergic neurons in planarians. Development 140: 3577–3588.

42. McNallSJ, MansourTE (1984) Novel serotonin receptors in Fasciola. Characterization by studies on adenylate cyclase activation and [3H]LSD binding. Biochemical Pharmacology 33: 2789–2797.

43. BoyleJP, ZaideJV, YoshinoT (2000) Schistosoma mansoni: effects of serotonin and serotonin receptor antagonists on motility and length of primary sporocysts in vitro. Experimenal Parasitology 94: 214–226.

44. PatockaN, RibeiroP (2013) The functional role of a serotonin transporter in Schistosoma mansoni elucidated through immunolocalization and RNA interference (RNAi). Molecular and Biochemical Parasitology 187: 32–42.

45. CattoBA, OttesenEA (1979) Serotonin uptake in schistosomules of Schistosoma mansoni. Comparative Biochemistry and Physiology C: Comparative Pharmacology 63C: 235–242.

46. AbdullaMH, RuelasDS, WolffB, SnedecorJ, LimKC, et al. (2009) Drug discovery for schistosomiasis: hit and lead compounds identified in a library of known drugs by medium-throughput phenotypic screening. PLoS Neglected Tropical Diseases 3: e478.

47. TaftAS, NoranteFA, YoshinoTP (2010) The identification of inhibitors of Schistosoma mansoni miracidial transformation by incorporating a medium-throughput small-molecule screen. Experimental Parasitology 125: 84–94.

48. NovozhilovaE, KimberMJ, QianH, McVeighP, RobertsonAP, et al. (2010) FMRFamide-Like Peptides (FLPs) Enhance Voltage-Gated Calcium Currents to Elicit Muscle Contraction in the Human Parasite Schistosoma mansoni. PLoS Neglected Tropical Diseases 4: e790.

49. Takahashi-YanagaF, TabaY, MiwaY, KuboharaY, WatanabeY, et al. (2003) Dictyostelium differentiation-inducing-factor-3 activates glycogen synthase kinase-3b and degrades cyclin D1 in mammalian cells. Journal of Biological Chemistry 278: 9963–9670.

50. GearyTG, ThompsonDP (2001) Caenorhabditis elegans: how good a model for veterinary parasites? Veterinary Parasitology 101: 371–386.

51. Holden-Dye L, Walker RJ (2012) How Relevant is Caenorhabditis elegans as a Model for the Analysis of Parasitic Nematode Biology? In: Caffrey CR, editor. Parasitic Helminths: Targets, Screens, Drugs and Vaccines. KGaA, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co.

52. FranquinetR, Le MoigneA (1979) Relation entre les variations des taux de serotonine et d'AMP cyclique au cors de la regeneration d'une planaire. Biol Cell 34: 71–76.

53. ChanJD, MarchantJS (2011) Pharmacological and functional genetic assays to manipulate regeneration of the planarian Dugesia japonica. Journal of Visualized Experiments: pii 3038.

54. Lewis FA (1999) Schistosomiasis. In: Coico R, editor. Current Protocols in Immunology: John Wiley and Sons, Inc. : pp. 19.11.11–19.11.18.

55. MannVH, MoralesME, RinaldiG, BrindleyPJ (2010) Culture for genetic manipulation of developmental stages of Schistosoma mansoni. Parasitology 137: 451–462.

56. SmoutMJ, KotzeAC, McCarthyJS, LoukasA (2010) A novel high throughput assay for anthelmintic drug screening and resistance diagnosis by real-time monitoring of parasite motility. PLoS Negl Trop Dis 4: e885.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2014 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#