#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Central Role of cAMP in Regulating Merozoite Invasion of Human Erythrocytes


The blood stage of malaria parasites is responsible for all the morbidity and mortality associated with malaria. During the blood stage, malaria parasites invade and multiply within host erythrocytes. The process of erythrocyte invasion requires specific interactions between host receptors and parasite ligands. Many of the key parasite proteins that bind host receptors are localized in apical organelles called micronemes. Here, we demonstrate that cAMP serves as a key regulator that controls the timely secretion of microneme proteins during invasion. We show that exposure of merozoites to a low K+ environment, as found in blood plasma, leads to a rise in cytosolic cAMP levels due to activation of the cytoplasmic, bicarbonate-sensitive adenylyl cyclase β (PfACβ). A rise in cAMP activates protein kinase A (PKA), which regulates microneme secretion. In addition, cAMP triggers a rise in cytosolic Ca2+ levels through the Epac pathway. Increases in both cAMP and Ca2+ levels are essential for triggering microneme secretion. Identification of the different elements in the cAMP-dependent signaling pathways that regulate microneme secretion during invasion provides novel targets to block erythrocyte invasion, inhibit blood stage parasite growth and prevent malaria.


Vyšlo v časopise: The Central Role of cAMP in Regulating Merozoite Invasion of Human Erythrocytes. PLoS Pathog 10(12): e32767. doi:10.1371/journal.ppat.1004520
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004520

Souhrn

The blood stage of malaria parasites is responsible for all the morbidity and mortality associated with malaria. During the blood stage, malaria parasites invade and multiply within host erythrocytes. The process of erythrocyte invasion requires specific interactions between host receptors and parasite ligands. Many of the key parasite proteins that bind host receptors are localized in apical organelles called micronemes. Here, we demonstrate that cAMP serves as a key regulator that controls the timely secretion of microneme proteins during invasion. We show that exposure of merozoites to a low K+ environment, as found in blood plasma, leads to a rise in cytosolic cAMP levels due to activation of the cytoplasmic, bicarbonate-sensitive adenylyl cyclase β (PfACβ). A rise in cAMP activates protein kinase A (PKA), which regulates microneme secretion. In addition, cAMP triggers a rise in cytosolic Ca2+ levels through the Epac pathway. Increases in both cAMP and Ca2+ levels are essential for triggering microneme secretion. Identification of the different elements in the cAMP-dependent signaling pathways that regulate microneme secretion during invasion provides novel targets to block erythrocyte invasion, inhibit blood stage parasite growth and prevent malaria.


Zdroje

1. CowmanAF, CrabbBS (2006) Invasion of red blood cells by malaria parasites. Cell 124: 755–766.

2. GaurD, ChitnisCE (2011) Molecular interactions and signaling mechanisms during erythrocyte invasion by malaria parasites. Curr Opin Microbiol 14: 422–428.

3. SharmaP, ChitnisCE (2013) Key molecular events during host cell invasion by Apicomplexan pathogens. Curr Opin Microbiol 16: 432–437.

4. BaumJ (2013) A complete molecular understanding of malaria parasite invasion of the human erythrocyte: are we there yet? Pathog Glob Health 107: 107–110.

5. SinghS, AlamMM, Pal-BhowmikI, BrzostowskiJA, ChitnisCE (2010) Distinct external signal trigger sequential release of apical organelles during erythrocyte invasion by malaria parasites. PLoS Pathog 6: e1000746.

6. SiddiquiFA, DhawanS, SinghS, SinghB, GuptaP, et al. (2013) A thrombospondin structural repeat containing rhoptry protein from Plasmodium falciparum mediates erythrocyte invasion. Cell Microbiol 15: 1341–56.

7. KimC, XuongNH, TaylorSS (2005) Crystal structure of a complex between the catalytic and regulatory (RIalpha) subunits of PKA. Science 307: 690–696.

8. ReadLK, MikkelsenRB (1990) Cyclic AMP- and Ca2+ -dependent protein kinases in Plasmodium falciparum. Exp Parasitol 71: 39–48.

9. SyinC, ParzyD, TraincardF, BoccaccioI, JoshiMB, et al. (2001) The H89 cAMP-dependent protein kinase inhibitor blocks Plasmodium falciparum development in infected erythrocytes. Eur J Biochem 268: 4842–4849.

10. LiJ, CoxLS (2000) Isolation and characterisation of a cAMP-dependent protein kinase catalytic subunit gene from Plasmodium falciparum. Mol Biochem Parasitol 109: 157–163.

11. MerckxA, NivezMP, BouyerG, AlanoP, LangsleyG, et al. (2008) Plasmodium falciparum regulatory subunit of cAMP-dependent PKA and anion channel conductance. PLoS Pathogens 4: e19.

12. HasteNM, TalabaniH, DooA, MerckxA, LangsleyG, et al. (2012) Exploring the Plasmodium falciparum cyclic-adenosine monophosphate (cAMP)-dependent protein kinase (Pf PKA) as a therapeutic target. Microbes and Infection 14: 838–850.

13. KurokawaH, KatoK, IwanagaT, SugiT, SudoA, et al. (2011) Identification of Toxoplasma gondii cAMP dependent protein kinase and its role in tachyzoite growth. PLoS One 2011 6(7): e22492 doi: 10.1371/journal.pone.0022492

14. KirkmanLA, WeissLM, KimK (2001) Cyclic nucleotide signaling in Toxoplasma gondii bradyzoite differentiation. Infect Immun 69(1): 148–53.

15. EatonMS, WeissLM, KimK (2006) Cyclic nucleotide kinases and tachyzoite-bradyzoite transition in Toxoplasma gondii. 2013. Int J Parasitol 36(1): 107–14.

16. HartmannA, Arroyo-OlarteRD, ImkellerK, HegemannP, LuciusR, et al. (2013) Optogenetic modulation of an adenylate cyclase in Toxoplasma gondii demonstrates a requirement of the parasite cAMP for host-cell invasion and stage differentiation. J Biol Chem 288(19): 13705–17 doi: 10.1074/jbc.M113.465583

17. GloerichM, BosJL (2010) Epac: defining a new mechanism for cAMP action. Annu Rev Pharmacol Toxicol 50: 355–375.

18. WeberJH, VishnyakovA, HambachK, SchultzA, SchiltzJE, et al. (2004) Adenylyl cyclases from Plasmodium, Paramecium and Tetrahymena are novel ion channel/enzyme fusion proteins. Cell Signal 16: 115–125.

19. SalazarE, BankEM, RamseyN, HessKC, DeitschDW, et al. (2012) Characterization of Plasmodium falciparum adenylyl cyclase β and its role in erythrocytic stage parasites. PLoS One 7: e39769.

20. OnoT, Cabrita-SantosL, LeitaoR, BettiolE, PurcellLA, et al. (2008) Adenylyl cyclase α and cAMP signaling mediate Plasmodium sporozoite apical regulated exocytosis and hepatocyte infection. PLoS Pathog 4(2): e1000008.

21. ChandraBR, OlivieriA, SilvestriniF, AlanoP, SharmaA (2005) Biochemical characterization of the two nucleosome assembly proteins from Plasmodium falciparum. Mol Biochem Parasitol 142: 237–47.

22. HowellSA, Withers-MartinezC, KockenCH, ThomasAW, BlackmanMJ (2001) Proteolytic processing and primary structure of Plasmodium falciparum apical membrane antigen-1. J Biol Chem 276(33): 31311–20.

23. BeavoJA, RogersNL, CroffordOB, HardmanJG, SutherlandEW, NewmanEV (1970) Effects of xanthine derivatives on lipolysis and on adenosine 3’,5’-monophosphate phosphodiesterase activity. Mol Pharmacol 6: 597–603.

24. ChenY, CannMJ, LitvinTN, IourgenkoV, SinclairML, et al. (2000) Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 289: 625–628.

25. CannMJ, HammerA, ZhouJ, KanacherT (2003) A defined subset of adenylyl cyclases is regulated by bicarbonate ion. J Biol Chem 278: 35033–35038.

26. KobayashiM, BuckJ, LevinLR (2004) Conservation of functional domain structure in bicarbonate-regulated “soluble” adenylyl cyclases in bacteria and eukaryotes. Dev Genes Evol 214: 503–509.

27. LindskogS (1997) Structure and mechanism of carbonic anhydrase. Pharmcol Ther 74: 1–20.

28. KrungkraiJ, KrungkraiSR, SupuranCT (2008) Carbonic anhydrase inhibitor: Inhibition of Plasmodium falciparun carbonic anhydrase with aromatic/heterocyclic sulfonamides- in vivo and in vitro studies. Bioorg Med Chem Lett 18: 5466–5474.

29. KrungkraiJ, SupuranCT (2008) The alpha carbonic anhydrase from malaria parasite and its inhibition. Curr Pharm Des 14: 631–640.

30. RinkTJ, TsienRY, PozzanT (1982) Cytoplasmic pH and free Mg2+ in lymphocytes. J Cell Biol 95: 189–96.

31. BorodinskyLN, SpitzerNC (2006) Second messenger pas de deux: the coordinated dance between calcium and cAMP. Sci STKE pe22

32. HoqueKM, WoodwordOM, RossumDB, ZachosNC, ChenL, et al. (2009) Epac1 mediates protein kinase A-independent mechanism of forskolin activated intestinal chloride secretion. J Gen Physiol 135: 43–58.

33. PurvesGI, KamishimaT, DaviesLM, QuayleJM, DartC (2009) Exchange protein activated by AMP (Epac) mediates cAMP-dependent but protein kinase A-insensitive modulation of vascular ATP-sensitive potassium channels. J Physiol 587: 3639–3650.

34. EnserinkJM, ChristensenAE, de RooijJ, van TriestM, SchwedeF, et al. (2002) A novel Epac-specific cAMP analogue demonstrates independent regulation of Rap1 and ERK. Nat Cell Biol 4(11): 901–6.

35. AlmahariqM, TsalkovaT, MeiFC, ChenH, ZhouJ, et al. (2013) A novel EPAC-specific inhibitor suppresses pancreatic cancer cell migration and invasion. Mol Pharmacol 83(1): 122–8.

36. TsalkovaT, MeiFC, LiS, ChepurnyOG, LeechCA, et al. (2012) Isoform-specific antagonists of exchange proteins directly activated by cAMP. Proc Natl Acad Sci U S A 109: 18613–8.

37. VogtA, QianY, McGuireTF, HamiltonAD, SebtiSM (1996) Protein geranylgeranylation, not farnesylation, is required for the G1 to S phase transition in mouse fibroblasts. 1996. Oncogene 13(9): 1991–9.

38. ChakrabartiD, Da SilvaT, BargerJ, PaquetteS, PatelH, PattersonS, AllenCM, et al. Protein farnesyltransferase and protein prenylation in Plasmodium falciparum. J Biol Chem 277: 42066–73.

39. YuleDI, WilliamsJA (1992) U73122 inhibits Ca2+ oscillations in response to cholecystokinin and carbochol but not to JMV-180 in rat pancreatic acinar cells. J Biol Chem 267: 13830–13835.

40. LeykaufK, TreeckM, GilsonPR, NeblT, BraulkeT, et al. (2010) Protein kinase A dependent phosphorylation of apical membrane antigen 1 plays an important role in erythrocyte invasion by the malaria parasite. PLoS Pathog 6: e1000941.

41. CollinsCR, HackettF, StrathM, PenzoM, Withers-MartinezC, et al. (2013) Malaria parasite cGMP-dependent protein kinase regulates blood stage merozoite secretory organelle discharge and egress. PLoS Pathog 9: e1003344.

42. YeohS, O'DonnellRA, KoussisK, DluzewskiAR, AnsellKH, et al. (2007) Subcellular discharge of a serine protease mediates release of invasive malaria parasites from host erythrocytes. Cell 131: 1072–1083.

43. AgarwalS, SinghMK, GargS, ChitnisCE, SinghS (2012) Ca(2+) -mediated exocytosis of subtilisin-like protease 1: a key step in egress of Plasmodium falciparum merozoites. Cell Microbiol 15: 910–921.

44. GlushakovaS, LizunovV, BlankPS, MelikovK, HumphreyG, et al. (2013) Cytoplasmic free Ca2+ is essential for multiple steps in malaria parasite egress from infected erythrocytes. Malar J 30: 12–41.

45. GeahlenRL, KrebsEG (1980) Regulatory subunit of the type I cAMP-dependent protein kinase as an inhibitor and substrate of the cGMP-dependent protein kinase. J Biol Chem 255: 1164–1169.

46. LasonderE, TreeckM, AlamM, TobinAB (2012) Insights into the Plasmodium falciparum schizont phospho-proteome. Microbes Infect 14: 811–819.

47. GaoX, GunalanK, YapSSL, PreiserP (2013) Triggers of key calcium signals during erythrocyte invasion by Plasmodium falciparum. Nature Commun 4: 2862 doi: 10.1038

48. TrigliaT, DuraisinghMT, GoodRT, CowmanAF (2005) Reticulocyte-binding protein homologue 1 is required for sialic acid dependent invasion into human erythrocytes by Plasmodium falciparum. Mol Microbiol 55: 162–174.

49. TragerW, JensenJB (1976) Human malaria parasites in continuous culture. Science 193: 673–675.

50. Van der HeydenN, BenaimG, DocampoR (1996) The role of a H+-ATPase in the regulation of cytoplasmic pH in Trypanosoma cruzi epimastigotes. Biochem J 318: 103–109.

51. SinghS, ChitnisCE (2013) Flow cytometry-based methods for measurement of cytosolic calcium and surface proteins expression in Plasmodium falciparum merozoites. Methods Mol Biol 923: 281–290.

52. SaharT, ReddyKS, BharadwajM, PandeyAK, SinghS, et al. (2011) Plasmodium falciparum reticulocyte binding-like homologue protein 2 (PfRH2) is a key adhesive molecule involved in erythrocyte invasion. PLoS One 6: e17102.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2014 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#