#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

P47 Mice Are Compromised in Expansion and Activation of CD8 T Cells and Susceptible to Infection


Macrophage activation of NADPH oxidase NOX2) and reactive oxygen species (ROS) is suggested to mediate control of Trypanosoma cruzi infection that is the causative agent of Chagas disease. However, how NOX2/ROS deficiency affects parasite persistence and chronic disease is not known. In this study, we present the first evidence that NOX2 and ROS shape the T cell-mediated adaptive immunity, and its deficiency result in compromised splenic activation of type 1 cytotoxic CD8+ T cell response to T. cruzi infection. Subsequently, p47phox−/− mice that lack NOX2 activity were more unable to control parasite replication and dissemination and succumbed to susceptible to T. cruzi infection. Our study highlights how redox state of innate immune cells alters the adaptive immunity to intracellular pathogens; and suggests that understanding the molecular and cellular mechanisms affected by redox state of immune cells at basal level could be exploited in designing future therapeutic and vaccination strategies against T. cruzi infection and Chagas disease.


Vyšlo v časopise: P47 Mice Are Compromised in Expansion and Activation of CD8 T Cells and Susceptible to Infection. PLoS Pathog 10(12): e32767. doi:10.1371/journal.ppat.1004516
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004516

Souhrn

Macrophage activation of NADPH oxidase NOX2) and reactive oxygen species (ROS) is suggested to mediate control of Trypanosoma cruzi infection that is the causative agent of Chagas disease. However, how NOX2/ROS deficiency affects parasite persistence and chronic disease is not known. In this study, we present the first evidence that NOX2 and ROS shape the T cell-mediated adaptive immunity, and its deficiency result in compromised splenic activation of type 1 cytotoxic CD8+ T cell response to T. cruzi infection. Subsequently, p47phox−/− mice that lack NOX2 activity were more unable to control parasite replication and dissemination and succumbed to susceptible to T. cruzi infection. Our study highlights how redox state of innate immune cells alters the adaptive immunity to intracellular pathogens; and suggests that understanding the molecular and cellular mechanisms affected by redox state of immune cells at basal level could be exploited in designing future therapeutic and vaccination strategies against T. cruzi infection and Chagas disease.


Zdroje

1. HiguchiMD, BenvenutiLA, Martins ReisM, MetzgerM (2003) Pathophysiology of the heart in Chagas' disease: current status and new developments. Cardiovasc Res 60: 96–107.

2. NagajyothiF, MachadoFS, BurleighBA, JelicksLA, SchererPE, et al. (2012) Mechanisms of Trypanosoma cruzi persistence in Chagas disease. Cell Microbiol 14: 634–643.

3. TanowitzHB, WeissLM, MontgomerySP (2011) Chagas disease has now gone global. PLoS Negl Trop Dis 5: e1136.

4. TanowitzHB, MachadoFS, JelicksLA, ShiraniJ, de CarvalhoAC, et al. (2009) Perspectives on Trypanosoma cruzi-induced heart disease (Chagas disease). Prog Cardiovasc Dis 51: 524–539.

5. MachadoFS, TylerKM, BrantF, EsperL, TeixeiraMM, et al. (2012) Pathogenesis of Chagas disease: time to move on. Front Biosci (Elite Ed) 4: 1743–1758.

6. MachadoFS, DutraWO, EsperL, GollobKJ, TeixeiraMM, et al. (2012) Current understanding of immunity to Trypanosoma cruzi infection and pathogenesis of Chagas disease. Seminars in Immunopathology 34: 753–770.

7. PandayA, SahooMK, OsorioD, BatraS (2014) NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol doi:10.1038/cmi.2014.89 (Epub ahead of print)

8. BedardK, KrauseKH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87: 245–313.

9. BatallerR, SchwabeRF, ChoiYH, YangL, PaikYH, et al. (2003) NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis. J Clin Invest 112: 1383–1394.

10. CardoniRL, AntunezMI, MoralesC, NantesIR (1997) Release of reactive oxygen species by phagocytic cells in response to live parasites in mice infected with Trypanosoma cruzi. Am J Trop Med Hyg 56: 329–334.

11. CardoniRL, RottenbergME, SeguraEL (1990) Increased production of reactive oxygen species by cells from mice acutely infected with Trypanosoma cruzi. Cell Immunol 128: 11–21.

12. PiacenzaL, AlvarezMN, PeluffoG, RadiR (2009) Fighting the oxidative assault: the Trypanosoma cruzi journey to infection. Curr Opin Microbiol 12: 415–421.

13. PineyroMD, ArcariT, RobelloC, RadiR, TrujilloM (2011) Tryparedoxin peroxidases from Trypanosoma cruzi: high efficiency in the catalytic elimination of hydrogen peroxide and peroxynitrite. Arch Biochem Biophys 507: 287–295.

14. AlvarezMN, PeluffoG, PiacenzaL, RadiR (2011) Intraphagosomal peroxynitrite as a macrophage-derived cytotoxin against internalized Trypanosoma cruzi: consequences for oxidative killing and role of microbial peroxiredoxins in infectivity. J Biol Chem 286: 6627–6640.

15. Vázquez-ChagoyánJC, GuptaS, GargNJ (2011) Vaccine development against Trypanosoma cruzi and Chagas disease. Advanced parasitol 75: 121–146.

16. PadillaAM, BustamanteJM, TarletonRL (2009) CD8+ T cells in Trypanosoma cruzi infection. Curr Opin Immunol 21: 385–390.

17. KotsiasF, HoffmannE, AmigorenaS, SavinaA (2013) Reactive oxygen species production in the phagosome: impact on antigen presentation in dendritic cells. Antioxid Redox Signal 18: 714–729.

18. LamGY, HuangJ, BrumellJH (2010) The many roles of NOX2 NADPH oxidase-derived ROS in immunity. Semin Immunopathol 32: 415–430.

19. GargNJ, PopovVL, PapaconstantinouJ (2003) Profiling gene transcription reveals a deficiency of mitochondrial oxidative phosphorylation in Trypanosoma cruzi-infected murine hearts: implications in chagasic myocarditis development. Biochim Biophys Acta 1638: 106–120.

20. GargNJ, BhatiaV, GerstnerA, deFordJ, PapaconstantinouJ (2004) Gene expression analysis in mitochondria from chagasic mice: Alterations in specific metabolic pathways. Biochemical J 381: 743–752.

21. GutierrezFR, MineoTW, PavanelliWR, GuedesPM, SilvaJS (2009) The effects of nitric oxide on the immune system during Trypanosoma cruzi infection. Mem Inst Oswaldo Cruz 104 Suppl 1: 236–245.

22. Dupre-CrochetS, ErardM, NubetaeO (2013) ROS production in phagocytes: why, when, and where? J Leukoc Biol 94: 657–670.

23. AlvarezMN, PiacenzaL, IrigoinF, PeluffoG, RadiR (2004) Macrophage-derived peroxynitrite diffusion and toxicity to Trypanosoma cruzi. Arch Biochem Biophys 432: 222–232.

24. NaviliatM, GualcoG, CayotaA, RadiR (2005) Protein 3-nitrotyrosine formation during Trypanosoma cruzi infection in mice. Braz J Med Biol Res 38: 1825–1834.

25. ParraM, PickettT, DeloguG, DheenadhayalanV, DebrieAS, et al. (2004) The mycobacterial heparin-binding hemagglutinin is a protective antigen in the mouse aerosol challenge model of tuberculosis. Infect Immun 72: 6799–6805.

26. SantiagoHC, Gonzalez LombanaCZ, MacedoJP, UtschL, TafuriWL, et al. (2012) NADPH phagocyte oxidase knockout mice control Trypanosoma cruzi proliferation, but develop circulatory collapse and succumb to infection. PLoS Negl Trop Dis 6: e1492.

27. TarletonRL (2007) Immune system recognition of Trypanosoma cruzi. Curr Opin Immunol 19: 430–434.

28. JendrysikMA, VasilevskyS, YiL, WoodA, ZhuN, et al. (2011) NADPH oxidase-2 derived ROS dictates murine DC cytokine-mediated cell fate decisions during CD4 T helper-cell commitment. PLoS One 6: e28198.

29. ShatynskiKE, ChenH, KwonJ, WilliamsMS (2012) Decreased STAT5 phosphorylation and GATA-3 expression in NOX2-deficient T cells: role in T helper development. Eur J Immunol 42: 3202–3211.

30. DonaldsonM, AntignaniA, MilnerJ, ZhuN, WoodA, et al. (2009) p47phox-deficient immune microenvironment signals dysregulate naive T-cell apoptosis. Cell Death Differ 16: 125–138.

31. LiuQ, YiL, Sadiq-AliS, KoontzSM, WoodA, et al. (2012) PP2A-dependent control of transcriptionally active FOXO3a in CD8(+) central memory lymphocyte survival requires p47(phox). Cell Death Dis 3: e375.

32. NamSJ, OhIS, YoonYH, KwonBI, KangW, et al. (2013) Apocynin regulates cytokine production of CD8 T cells. Clin Exp Med 14(3): 261–268.

33. VasilevskyS, LiuQ, KoontzSM, KastenmayerR, SheaK, et al. (2011) Role of p47phox in antigen-presenting cell-mediated regulation of humoral immunity in mice. Am J Pathol 178: 2774–2782.

34. DoerriesC, GroteK, Hilfiker-KleinerD, LuchtefeldM, SchaeferA, et al. (2007) Critical role of the NAD(P)H oxidase subunit p47phox for left ventricular remodeling/dysfunction and survival after myocardial infarction. Circ Res 100: 894–903.

35. PatelVB, WangZ, FanD, ZhabyeyevP, BasuR, et al. (2013) Loss of p47phox subunit enhances susceptibility to biomechanical stress and heart failure because of dysregulation of cortactin and actin filaments. Circ Res 112: 1542–1556.

36. DhimanM, NakayasuES, MadaiahYH, ReynoldsBK, WenJJ, et al. (2008) Enhanced nitrosative stress during Trypanosoma cruzi infection causes nitrotyrosine modification of host proteins: implications in Chagas' disease. Am J Pathol 173: 728–740.

37. WenJ-J, GuptaS, GuanZ, DhimanM, CondonD, et al. (2010) Phenyl-alpha-tert-butyl-nitrone and benzonidazole treatment controlled the mitochondrial oxidative stress and evolution of cardiomyopathy in chronic chagasic rats. J Am Coll Cardiol 55: 2499–2508.

38. BartlettEJ, LenzoJC, SivamoorthyS, MansfieldJP, CullVS, et al. (2004) Type I IFN-beta gene therapy suppresses cardiac CD8+ T-cell infiltration during autoimmune myocarditis. Immunol Cell Biol 82: 119–126.

39. DhimanM, GargNJ (2011) NADPH oxidase inhibition ameliorates Trypanosoma cruzi-induced myocarditis during Chagas disease. J Pathol 225: 583–596.

40. WanX-X, GuptaS, ZagoMP, DavidsonMM, DoussetP, et al. (2012) Defects of mtDNA replication impaired the mitochondrial biogenesis during Trypanosoma cruzi infection in human cardiomyocytes and chagasic patients: The role of Nrf1/2 and antioxidant response. J Am Heart Assoc 1: e003855.

41. GuptaS, SilvaTS, OsizugboJE, TuckerL, SprattHM, GargNJ (2014) Serum mediated activation of macrophages reflects Tcvac2 vaccine efficacy against Chagas disease. Infect Immun 82(4): 1382–1389.

42. DhimanM, CoronadoYA, VallejoCK, PetersenJR, EjilemeleA, et al. (2013) Innate immune responses and antioxidant/oxidant imbalance are major determinants of human chagas disease. Plos NTD 7: e2364.

43. MosmannT (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65: 55–63.

44. GuptaS, GargNJ (2013) TcVac3 induced control of Trypanosoma cruzi infection and chronic myocarditis in mice. Plos One 8: e59434.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2014 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#