Multiple Roles of the Cytoskeleton in Bacterial Autophagy
article has not abstract
Vyšlo v časopise:
Multiple Roles of the Cytoskeleton in Bacterial Autophagy. PLoS Pathog 10(11): e32767. doi:10.1371/journal.ppat.1004409
Kategorie:
Pearls
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004409
Souhrn
article has not abstract
Zdroje
1. LevineB, MizushimaN, VirginHW (2011) Autophagy in immunity and inflammation. Nature 469 : 323–335.
2. MostowyS, CossartP (2012) Bacterial autophagy: restriction or promotion of bacterial replication? Trend Cell Biol 22 : 283–291.
3. HuangJ, BrumellJH (2014) Bacteria-autophagy interplay: a battle for survival. Nat Rev Micro 12 : 101–114.
4. ChoyA, RoyCR (2013) Autophagy and bacterial infection: an evolving arms race. Trends Microbiol 21 : 451–456.
5. MizushimaN, YoshimoriT, OhsumiY (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27 : 107–132.
6. RogovV, DötschV, JohansenT, KirkinV (2014) Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell 53 : 167–178.
7. MostowyS (2013) Autophagy and bacterial clearance: a not so clear picture. Cell Microbiol 15 : 395–402.
8. AguileraMO, BerónW, ColomboMI (2012) The actin cytoskeleton participates in the early events of autophagosome formation upon starvation induced autophagy. Autophagy 8 : 1590–1603.
9. ZavodszkyE, SeamanMNJ, MoreauK, Jimenez-SanchezM, BreusegemSY, et al. (2014) Mutation in VPS35 associated with Parkinson's disease impairs WASH complex association and inhibits autophagy. Nat Commun 5 : 3828.
10. LeeJY, KogaH, KawaguchiY, TangW, WongE, et al. (2010) HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J 29 : 969–980.
11. WelchMD, WayM (2013) Arp2/3-mediated actin-based motility: a tail of pathogen abuse. Cell Host Microbe 14 : 242–255.
12. YoshikawaY, OgawaM, HainT, YoshidaM, FukumatsuM, et al. (2009) Listeria monocytogenes ActA-mediated escape from autophagic recognition. Nat Cell Biol 11 : 1233–1240.
13. MostowyS, Sancho-ShimizuV, HamonMA, SimeoneR, BroschR, et al. (2011) p62 and NDP52 proteins target intracytosolic Shigella and Listeria to different autophagy pathways. J Biol Chem 286 : 26987–26995.
14. MostowyS, BonazziM, HamonMA, ThamTN, MalletA, et al. (2010) Entrapment of intracytosolic bacteria by septin cage-like structures. Cell Host Microbe 8 : 433–444.
15. OgawaM, YoshimoriT, SuzukiT, SagaraH, MizushimaN, et al. (2005) Escape of intracellular Shigella from autophagy. Science 307 : 727–731.
16. OgawaM, YoshikawaY, KobayashiT, MimuroH, FukumatsuM, et al. (2011) A Tecpr1-dependent selective autophagy pathway targets bacterial pathogens. Cell Host Microbe 9 : 376–389.
17. ChenD, FanW, LuY, DingX, ChenS, et al. (2012) A mammalian autophagosome maturation mechanism mediated by TECPR1 and the Atg12-Atg5 conjugate. Mol Cell 45 : 629–641.
18. MonastyrskaI, RieterE, KlionskyDJ, ReggioriF (2009) Multiple roles of the cytoskeleton in autophagy. Biol Rev 84 : 431–448.
19. KorolchukVI, SaikiS, LichtenbergM, SiddiqiFH, RobertsEA, et al. (2011) Lysosomal positioning coordinates cellular nutrient responses. Nat Cell Biol 13 : 453–460.
20. RadhakrishnanGK, SplitterGA (2012) Modulation of host microtubule dynamics by pathogenic bacteria. Biomol Concepts 3 : 571–580.
21. PfeufferT, GoebelW, LaubingerJ, BachmannM, KuhnM (2000) LaXp180, a mammalian ActA-binding protein, identified with the yeast two-hybrid system, co-localizes with intracellular Listeria monocytogenes. Cell Microbiol 2 : 101–114.
22. YoshidaS, HandaY, SuzukiT, OgawaM, SuzukiM, et al. (2006) Microtubule-severing activity of Shigella is pivotal for intercellular spreading. Science 314 : 985–989.
23. HuangJ, BirminghamC, ShahnazariS, ShiuJ, ZhengY, et al. (2011) Antibacterial autophagy occurs at PI(3)P-enriched domains of the endoplasmic reticulum and requires Rab1 GTPase. Autophagy 7 : 17–26.
24. DongN, ZhuY, LuQ, HuL, ZhengY, et al. (2012) Structurally distinct bacterial TBC-like GAPs link Arf GTPase to Rab1 inactivation to counteract host defenses. Cell 150 : 1029–1041.
25. BrumellJH, GoosneyDL, FinlayBB (2002) SifA, a type III secreted effector of Salmonella typhimurium, directs Salmonella-induced filament (Sif) formation along microtubules. Traffic 3 : 407–415.
26. ZhengYT, ShahnazariS, BrechA, LamarkT, JohansenT, et al. (2009) The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J Immunol 183 : 5909–5916.
27. ThurstonTLM, RyzhakovG, BloorS, von MuhlinenN, RandowF (2009) The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat Immunol 10 : 1215–1221.
28. YuHB, CroxenMA, MarchiandoAM, FerreiraRBR, CadwellK, et al. (2014) Autophagy facilitates Salmonella replication in HeLa cells. mBio 5: e00865–14.
29. HuettA, NgA, CaoZ, KuballaP, KomatsuM, et al. (2009) A novel hybrid yeast-human network analysis reveals an essential role for FNBP1L in antibacterial autophagy. J Immunol 182 : 4917–4930.
30. BaxtLA, GoldbergMB (2014) Host and bacterial proteins that repress recruitment of LC3 to Shigella early during infection. PLoS ONE 9: e94653.
31. LeungY, AllyS, GoldbergMB (2008) Bacterial actin assembly requires Toca-1 to relieve N-WASP autoinhibition. Cell Host Microbe 3 : 39–47.
32. WangRC, WeiY, AnZ, ZouZ, XiaoG, et al. (2012) Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science 338 : 956–959.
33. ScidmoreMA, HackstadtT (2001) Mammalian 14-3-3β associates with the Chlamydia trachomatis inclusion membrane via its interaction with IncG. Mol Microbiol 39 : 1638–1650.
34. KumarY, ValdiviaRH (2008) Actin and intermediate filaments stabilize the Chlamydia trachomatis vacuole by forming dynamic structural scaffolds. Cell Host Microbe 4 : 159–169.
35. BestebroerJ, V'KovskiP, MautheM, ReggioriF (2013) Hidden behind autophagy: the unconventional roles of ATG proteins. Traffic 14 : 1029–1041.
36. Al-ZeerM, Al-YounesH, LausterD, Abu LubadM, MeyerT (2013) Autophagy restricts Chlamydia trachomatis growth in human macrophages via IFNG-inducible guanylate binding proteins. Autophagy 9 : 50–62.
37. MostowyS, CossartP (2012) Septins: the fourth component of the cytoskeleton. Nat Rev Mol Cell Biol 13 : 183–194.
38. PascallJC, RotondoS, MukadamAS, OxleyD, WebsterJ, et al. (2013) The immune system GTPase GIMAP6 interacts with the Atg8 homologue GABARAPL2 and is recruited to autophagosomes. PLoS ONE 8: e77782.
39. von MuhlinenN, AkutsuM, RavenhillBJ, FoegleinÁ, BloorS, et al. (2012) LC3C, bound selectively by a noncanonical LIR motif in NDP52, is required for antibacterial autophagy. Mol Cell 48 : 329–342.
40. Tanaka-TakiguchiY, KinoshitaM, TakiguchiK (2009) Septin-mediated uniform bracing of phospholipid membranes. Curr Biol 19 : 140–145.
41. PriscaVI, WangEB, ChaudhuriO, ChiaJJ, GeisslerPL, et al. (2012) Actin filament curvature biases branching direction. Proc Natl Acad Sci U S A 109 : 2913–2918.
42. MavrakisM, Azou-GrosY, TsaiF-C, AlvaradoJ, BertinA, et al. (2014) Septins promote F-actin ring formation by crosslinking actin filaments into curved bundles. Nat Cell Biol 16 : 322–334.
43. MostowyS, BoucontetL, Mazon MoyaMJ, SirianniA, BoudinotP, et al. (2013) The zebrafish as a new model for the in vivo study of Shigella flexneri interaction with phagocytes and bacterial autophagy. PLoS Pathog 9: e1003588.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 11
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Coronavirus Cell Entry Occurs through the Endo-/Lysosomal Pathway in a Proteolysis-Dependent Manner
- Peculiarities of Prion Diseases
- Host-Specific Parvovirus Evolution in Nature Is Recapitulated by Adaptation to Different Carnivore Species
- War and Infectious Diseases: Challenges of the Syrian Civil War