#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Crystal Structure and Functional Analysis of the SARS-Coronavirus RNA Cap 2′-O-Methyltransferase nsp10/nsp16 Complex


Cellular and viral S-adenosylmethionine-dependent methyltransferases are involved in many regulated processes such as metabolism, detoxification, signal transduction, chromatin remodeling, nucleic acid processing, and mRNA capping. The Severe Acute Respiratory Syndrome coronavirus nsp16 protein is a S-adenosylmethionine-dependent (nucleoside-2′-O)-methyltransferase only active in the presence of its activating partner nsp10. We report the nsp10/nsp16 complex structure at 2.0 Å resolution, which shows nsp10 bound to nsp16 through a ∼930 Å2 surface area in nsp10. Functional assays identify key residues involved in nsp10/nsp16 association, and in RNA binding or catalysis, the latter likely through a SN2-like mechanism. We present two other crystal structures, the inhibitor Sinefungin bound in the S-adenosylmethionine binding pocket and the tighter complex nsp10(Y96F)/nsp16, providing the first structural insight into the regulation of RNA capping enzymes in (+)RNA viruses.


Vyšlo v časopise: Crystal Structure and Functional Analysis of the SARS-Coronavirus RNA Cap 2′-O-Methyltransferase nsp10/nsp16 Complex. PLoS Pathog 7(5): e32767. doi:10.1371/journal.ppat.1002059
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1002059

Souhrn

Cellular and viral S-adenosylmethionine-dependent methyltransferases are involved in many regulated processes such as metabolism, detoxification, signal transduction, chromatin remodeling, nucleic acid processing, and mRNA capping. The Severe Acute Respiratory Syndrome coronavirus nsp16 protein is a S-adenosylmethionine-dependent (nucleoside-2′-O)-methyltransferase only active in the presence of its activating partner nsp10. We report the nsp10/nsp16 complex structure at 2.0 Å resolution, which shows nsp10 bound to nsp16 through a ∼930 Å2 surface area in nsp10. Functional assays identify key residues involved in nsp10/nsp16 association, and in RNA binding or catalysis, the latter likely through a SN2-like mechanism. We present two other crystal structures, the inhibitor Sinefungin bound in the S-adenosylmethionine binding pocket and the tighter complex nsp10(Y96F)/nsp16, providing the first structural insight into the regulation of RNA capping enzymes in (+)RNA viruses.


Zdroje

1. GuMLimaCD 2005 Processing the message: structural insights into capping and decapping mRNA. Curr Opin Struct Biol 15 99 106

2. ShumanS 2001 Structure, mechanism, and evolution of the mRNA capping apparatus. Prog Nucleic Acid Res Mol Biol 66 1 40

3. ShumanS 2002 What messenger RNA capping tells us about eukaryotic evolution. Nat Rev Mol Cell Biol 3 619 625

4. YoneyamaMFujitaT 2010 Recognition of viral nucleic acids in innate immunity. Rev Med Virol 20 4 22

5. ShumanS 2001 The mRNA capping apparatus as drug target and guide to eukaryotic phylogeny. Cold Spring Harb Symp Quant Biol 66 301 312

6. AholaTKaariainenL 1995 Reaction in alphavirus mRNA capping: formation of a covalent complex of nonstructural protein nsP1 with 7-methyl-GMP. Proc Natl Acad Sci U S A 92 507 511

7. OginoTBanerjeeAK 2007 Unconventional mechanism of mRNA capping by the RNA-dependent RNA polymerase of vesicular stomatitis virus. Mol Cell 25 85 97

8. PlotchSJBouloyMUlmanenIKrugRM 1981 A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell 23 847 858

9. RotaPAObersteMSMonroeSSNixWACampagnoliR 2003 Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300 1394 1399

10. GorbalenyaAEEnjuanesLZiebuhrJSnijderEJ 2006 Nidovirales: evolving the largest RNA virus genome. Virus Res 117 17 37

11. LaiMMPattonCDStohlmanSA 1982 Further characterization of mRNA's of mouse hepatitis virus: presence of common 5′-end nucleotides. J Virol 41 557 565

12. LaiMMStohlmanSA 1981 Comparative analysis of RNA genomes of mouse hepatitis viruses. J Virol 38 661 670

13. van VlietALSmitsSLRottierPJde GrootRJ 2002 Discontinuous and non-discontinuous subgenomic RNA transcription in a nidovirus. EMBO J 21 6571 6580

14. DecrolyEImbertICoutardBBouvetMSeliskoB 2008 Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside-2′O)-methyltransferase activity. J Virol 82 8071 8084

15. ChenYCaiHPanJXiangNTienP 2009 Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7-methyltransferase. Proc Natl Acad Sci U S A 106 3484 3489

16. BouvetMDebarnotCImbertISeliskoBSnijderEJ 2010 In vitro reconstitution of SARS-coronavirus mRNA cap methylation. PLoS Pathog 6 e1000863

17. ImbertISnijderEJDimitrovaMGuillemotJC 2008 The SARS-Coronavirus PLnc domain of nsp3 as a replication/transcription scaffolding protein. Virus Res 133 136 148

18. LugariABetziSDecrolyEBonnaudEHermantA 2010 Molecular mapping of the RNA Cap 2′-O-methyltransferase activation interface between SARS coronavirus nsp10 and nsp16. J Biol Chem 285 33230 33241

19. PanJPengXGaoYLiZLuX 2008 Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV replication. PLoS One 3 e3299

20. JosephJSSaikatenduKSSubramanianVNeumanBWBroounA 2006 Crystal structure of nonstructural protein 10 from the severe acute respiratory syndrome coronavirus reveals a novel fold with two zinc-binding motifs. J Virol 80 7894 7901

21. SuDLouZSunFZhaiYYangH 2006 Dodecamer structure of severe acute respiratory syndrome coronavirus nonstructural protein nsp10. J Virol 80 7902 7908

22. SawickiSGSawickiDLYounkerDMeyerYThielV 2005 Functional and genetic analysis of coronavirus replicase-transcriptase proteins. PLoS Pathog 1 e39

23. DonaldsonEFSimsACGrahamRLDenisonMRBaricRS 2007 Murine hepatitis virus replicase protein nsp10 is a critical regulator of viral RNA synthesis. J Virol 81 6356 6368

24. DonaldsonEFGrahamRLSimsACDenisonMRBaricRS 2007 Analysis of murine hepatitis virus strain A59 temperature-sensitive mutant TS-LA6 suggests that nsp10 plays a critical role in polyprotein processing. J Virol 81 7086 7098

25. MartinJLMcMillanFM 2002 SAM (dependent) I AM: the S-adenosylmethionine-dependent methyltransferase fold. Curr Opin Struct Biol 12 783 793

26. VidgrenJSvenssonLALiljasA 1994 Crystal structure of catechol O-methyltransferase. Nature 368 354 358

27. HodelAEGershonPDShiXQuiochoFA 1996 The 1.85 A structure of vaccinia protein VP39: a bifunctional enzyme that participates in the modification of both mRNA ends. Cell 85 247 256

28. De la PenaMKyrieleisOJCusackS 2007 Structural insights into the mechanism and evolution of the vaccinia virus mRNA cap N7 methyl-transferase. EMBO J 26 4913 4925

29. ReinischKMNibertMLHarrisonSC 2000 Structure of the reovirus core at 3.6 A resolution. Nature 404 960 967

30. SuttonGGrimesJMStuartDIRoyP 2007 Bluetongue virus VP4 is an RNA-capping assembly line. Nat Struct Mol Biol 14 449 451

31. EgloffMPBenarrochDSeliskoBRometteJLCanardB 2002 An RNA cap (nucleoside-2′-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. EMBO J 21 2757 2768

32. EgloffMPDecrolyEMaletHSeliskoBBenarrochD 2007 Structural and functional analysis of methylation and 5′-RNA sequence requirements of short capped RNAs by the methyltransferase domain of dengue virus NS5. J Mol Biol 372 723 736

33. RayDShahATilgnerMGuoYZhaoY 2006 West Nile virus 5′-cap structure is formed by sequential guanine N-7 and ribose 2′-O methylations by nonstructural protein 5. J Virol 80 8362 8370

34. BollatiMAlvarezKAssenbergRBarontiCCanardB 2010 Structure and functionality in flavivirus NS-proteins: perspectives for drug design. Antiviral Res 87 125 148

35. SnijderEJBredenbeekPJDobbeJCThielVZiebuhrJ 2003 Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol 331 991 1004

36. BalzariniJDe ClercqESerafinowskiPDorlandEHarrapKR 1992 Synthesis and antiviral activity of some new S-adenosyl-L-homocysteine derivatives. J Med Chem 35 4576 4583

37. DongHZhangBShiPY 2008 Flavivirus methyltransferase: a novel antiviral target. Antiviral Res 80 1 10

38. PughCSBorchardtRTStoneHO 1977 Inhibition of Newcastle disease virion messenger RNA (guanine-7-)-methyltransferase by analogues of S-adenosylhomocysteine. Biochemistry 16 3928 3932

39. PughCSBorchardtRTStoneHO 1978 Sinefungin, a potent inhibitor of virion mRNA(guanine-7-)-methyltransferase, mRNA(nucleoside-2′-)-methyltransferase, and viral multiplication. J Biol Chem 253 4075 4077

40. DebarnotCImbertIFerronFGluaisLVarletI 2011 Crystallization and diffraction analysis of the SARS coronavirus nsp10/nsp16 complex. Acta Crystallogr Sect F Struct Biol Cryst Commun 67 404 8

41. HolmLParkJ 2000 DaliLite workbench for protein structure comparison. Bioinformatics 16 566 567

42. DudevTLimC 2003 Principles governing Mg, Ca, and Zn binding and selectivity in proteins. Chem Rev 103 773 788

43. MarcotrigianoJGingrasACSonenbergNBurleySK 1997 Cocrystal structure of the messenger RNA 5′ cap-binding protein (eIF4E) bound to 7-methyl-GDP. Cell 89 951 961

44. MazzaCSegrefAMattajIWCusackS 2002 Large-scale induced fit recognition of an m(7)GpppG cap analogue by the human nuclear cap-binding complex. EMBO J 21 5548 5557

45. GuilligayDTarendeauFResa-InfantePColomaRCrepinT 2008 The structural basis for cap binding by influenza virus polymerase subunit PB2. Nat Struct Mol Biol 15 500 506

46. QuiochoFAHuGGershonPD 2000 Structural basis of mRNA cap recognition by proteins. Curr Opin Struct Biol 10 78 86

47. HodelAEGershonPDQuiochoFA 1998 Structural basis for sequence-nonspecific recognition of 5′-capped mRNA by a cap-modifying enzyme. Mol Cell 1 443 447

48. LiCXiaYGaoXGershonPD 2004 Mechanism of RNA 2′-O-methylation: evidence that the catalytic lysine acts to steer rather than deprotonate the target nucleophile. Biochemistry 43 5680 5687

49. SigelRKSigelH 2010 A stability concept for metal ion coordination to single-stranded nucleic acids and affinities of individual sites. Acc Chem Res 43 974 984

50. DeySPalAChakrabartiPJaninJ 2010 The subunit interfaces of weakly associated homodimeric proteins. J Mol Biol 398 146 160

51. YoneyamaMKikuchiMNatsukawaTShinobuNImaizumiT 2004 The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5 730 737

52. MaletHEgloffMPSeliskoBButcherREWrightPJ 2007 Crystal structure of the RNA polymerase domain of the West Nile virus non-structural protein 5. J Biol Chem 282 10678 10689

53. DongHLiuLZouGZhaoYLiZ 2010 Structural and functional analyses of a conserved hydrophobic pocket of flavivirus methyltransferase. J Biol Chem 285 32586 32595

54. McCoyAJGrosse-KunstleveRWAdamsPDWinnMDStoroniLC 2007 Phaser crystallographic software. Journal of applied crystallography 40 658 674

55. CowtanK 2010 Recent developments in classical density modification. Acta Crystallogr D Biol Crystallogr 66 470 478

56. CowtanK 2006 The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr D Biol Crystallogr 62 1002 1011

57. CohenSXMorrisRJFernandezFJBen JelloulMKakarisM 2004 Towards complete validated models in the next generation of ARP/wARP. Acta Crystallogr D Biol Crystallogr 60 2222 2229

58. EmsleyPCowtanK 2004 Coot: model-building tools for molecular graphics. Acta crystallographica Section D, Biological crystallography 60 2126 2132

59. Collaborative Computational Project N 1994 The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50 760 763

60. SaffEBKuijlaarsABJ 1997 Distributing Many Points on a Sphere. Math Intell 19 5 11

61. PeyraneFSeliskoBDecrolyEVasseurJJBenarrochD 2007 High-yield production of short GpppA- and 7MeGpppA-capped RNAs and HPLC-monitoring of methyltransfer reactions at the guanine-N7 and adenosine-2′O positions. Nucleic Acids Res 35 e26

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2011 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#